AICortex Platform Documentation

Comprehensive guide to building, deploying, and scaling AI applications with AICortex - the next-generation AI infrastructure platform.

7
Platform Components
50+
API Endpoints
99.9%
Uptime SLA
24/7
Support

Platform Architecture

AICortex is built on a modern microservices architecture designed for scalability, reliability, and security. The platform consists of seven integrated components that work together to provide a comprehensive AI infrastructure solution.

🏗️ Microservices Design

Each component operates as an independent service with well-defined APIs and responsibilities:

Core Services

  • Auth Module - Authentication & authorization
  • Instance Management - GPU orchestration
  • Data Input Streams - Multi-source data ingestion
  • Model Hub - AI model registry

Development & Operations

  • ZeroCore - Guided development platform
  • CortexFlow - ML pipeline automation
  • CortexLogs - Monitoring & observability

Core Components Overview

Each component addresses specific aspects of the AI development lifecycle, from data ingestion to model deployment and monitoring.

Auth Module

Enterprise-grade security with RBAC and SSO integration.

Stable

Instance Management

Serverless GPU orchestration with auto-scaling capabilities.

Stable

Data Input Streams

Multi-source data ingestion from S3, Kafka, and more.

Stable

ZeroCore

Intelligent development platform with guided workflows.

Beta

Model Hub

Comprehensive AI model registry with deployment tools.

Stable

CortexFlow

ML pipeline automation with distributed training.

Beta

Quick Start Guide

Get up and running with AICortex in under 5 minutes. This guide will walk you through the essential steps to deploy your first AI model.

Prerequisites: You'll need an AICortex account and API key. Sign up here if you haven't already.

Step 1: Install the SDK

Choose your preferred programming language and install the AICortex SDK:

bash
# Install via pip
pip install aicortex

# Or install with conda
conda install -c conda-forge aicortex
bash
# Install via npm
npm install @aicortex/client

# Or install with yarn
yarn add @aicortex/client
bash
# No installation required for cURL
# Make sure you have curl installed
curl --version

Step 2: Authentication

Set up your API credentials to authenticate with the AICortex platform:

python
import aicortex

# Initialize the client with your API key
client = aicortex.Client(api_key="your_api_key_here")

# Alternative: set environment variable
# export AICORTEX_API_KEY="your_api_key_here"
# client = aicortex.Client()  # Will use env variable

# Test authentication
user = client.auth.get_user()
print(f"Authenticated as: {user.email}")
javascript
import { AICortexClient } from '@aicortex/client';

// Initialize the client with your API key
const client = new AICortexClient({
  apiKey: 'your_api_key_here'
});

// Alternative: set environment variable
// process.env.AICORTEX_API_KEY = "your_api_key_here"
// const client = new AICortexClient(); // Will use env variable

// Test authentication
const user = await client.auth.getUser();
console.log(`Authenticated as: ${user.email}`);
bash
# Set your API key as environment variable
export AICORTEX_API_KEY="your_api_key_here"

# Test authentication
curl -H "Authorization: Bearer $AICORTEX_API_KEY" \
     -H "Content-Type: application/json" \
     https://api.aicortex.in/v1/auth/user

Step 3: Deploy Your First Model

Let's deploy a pre-trained model from the Model Hub. We'll use a simple image classification model:

python
# Deploy a pre-trained image classification model
deployment = client.models.deploy(
    model_id="resnet50-imagenet",
    name="my-image-classifier",
    config={
        "instance_type": "gpu.small",
        "auto_scaling": {
            "min_instances": 1,
            "max_instances": 5
        }
    }
)

print(f"Model deployed! Endpoint: {deployment.endpoint_url}")
print(f"Status: {deployment.status}")

# Wait for deployment to complete
deployment.wait_until_ready(timeout=300)  # 5 minutes
print("Model is ready for inference!")
javascript
// Deploy a pre-trained image classification model
const deployment = await client.models.deploy({
  modelId: 'resnet50-imagenet',
  name: 'my-image-classifier',
  config: {
    instanceType: 'gpu.small',
    autoScaling: {
      minInstances: 1,
      maxInstances: 5
    }
  }
});

console.log(`Model deployed! Endpoint: ${deployment.endpointUrl}`);
console.log(`Status: ${deployment.status}`);

// Wait for deployment to complete
await deployment.waitUntilReady({ timeout: 300000 }); // 5 minutes
console.log('Model is ready for inference!');
bash
# Deploy a pre-trained image classification model
curl -X POST https://api.aicortex.in/v1/models/deploy \
  -H "Authorization: Bearer $AICORTEX_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model_id": "resnet50-imagenet",
    "name": "my-image-classifier",
    "config": {
      "instance_type": "gpu.small",
      "auto_scaling": {
        "min_instances": 1,
        "max_instances": 5
      }
    }
  }'

# Check deployment status
curl -H "Authorization: Bearer $AICORTEX_API_KEY" \
     https://api.aicortex.in/v1/deployments/my-image-classifier

Step 4: Make Your First Prediction

Once your model is deployed, you can start making predictions:

python
# Make a prediction with an image URL
result = client.models.predict(
    deployment_name="my-image-classifier",
    inputs={
        "image": "https://example.com/cat.jpg"
    }
)

print("Predictions:")
for prediction in result.predictions:
    print(f"  {prediction.label}: {prediction.confidence:.2%}")

# Or use a local image file
with open("local_image.jpg", "rb") as f:
    result = client.models.predict(
        deployment_name="my-image-classifier",
        inputs={"image": f}
    )
javascript
// Make a prediction with an image URL
const result = await client.models.predict({
  deploymentName: 'my-image-classifier',
  inputs: {
    image: 'https://example.com/cat.jpg'
  }
});

console.log('Predictions:');
result.predictions.forEach(prediction => {
  console.log(`  ${prediction.label}: ${(prediction.confidence * 100).toFixed(1)}%`);
});

// Or use a local image file (browser)
const fileInput = document.getElementById('imageFile');
const formData = new FormData();
formData.append('image', fileInput.files[0]);

const result = await client.models.predict({
  deploymentName: 'my-image-classifier',
  inputs: formData
});
bash
# Make a prediction with an image URL
curl -X POST https://api.aicortex.in/v1/predict \
  -H "Authorization: Bearer $AICORTEX_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "deployment_name": "my-image-classifier",
    "inputs": {
      "image": "https://example.com/cat.jpg"
    }
  }'

# Or upload a local image file
curl -X POST https://api.aicortex.in/v1/predict \
  -H "Authorization: Bearer $AICORTEX_API_KEY" \
  -F "deployment_name=my-image-classifier" \
  -F "image=@local_image.jpg"
🎉 Congratulations! You've successfully deployed and used your first AI model with AICortex. Learn more about advanced deployment options.

Authentication

AICortex uses API keys for authentication. All requests to the API must include a valid API key in the Authorization header.

Getting Your API Key

  1. Sign up for an AICortex account at app.aicortex.in
  2. Navigate to the API Keys section in your dashboard
  3. Click "Generate New Key" and give it a descriptive name
  4. Copy the key and store it securely
⚠️ Security Notice: Never expose your API key in client-side code or public repositories. Always use environment variables or secure key management systems.

Authentication Methods

Bearer Token

Include your API key in the Authorization header using the Bearer scheme:

http
Authorization: Bearer your_api_key_here

Environment Variables

Set your API key as an environment variable for added security:

bash
# Linux/macOS
export AICORTEX_API_KEY="your_api_key_here"

# Windows
set AICORTEX_API_KEY=your_api_key_here

API Key Scopes

API keys can be configured with different scopes to limit access:

Scope Description Permissions
read Read-only access View models, deployments, logs
write Read and write access Deploy models, manage instances
admin Full administrative access All operations including billing

Rate Limits

API requests are rate limited based on your subscription tier:

Free Tier

1,000
requests/hour

Pro Tier

10,000
requests/hour

Enterprise

Unlimited
custom limits

REST API Reference

The AICortex REST API provides programmatic access to all platform features. All endpoints are available at https://api.aicortex.in/v1.

Base URL

url
https://api.aicortex.in/v1

Authentication

All API requests require authentication using your API key in the Authorization header:

http
Authorization: Bearer your_api_key_here
Content-Type: application/json

Model Management

GET /models

Retrieve a list of available models from the Model Hub.

Query Parameters

Parameter Type Description
category string Filter by model category (e.g., "nlp", "vision")
limit integer Number of models to return (default: 20, max: 100)
offset integer Number of models to skip for pagination
bash
curl -H "Authorization: Bearer $AICORTEX_API_KEY" \
     "https://api.aicortex.in/v1/models?category=vision&limit=10"
json
{
  "models": [
    {
      "id": "resnet50-imagenet",
      "name": "ResNet-50 ImageNet",
      "category": "vision",
      "description": "Pre-trained ResNet-50 model for image classification",
      "framework": "pytorch",
      "version": "1.0.0",
      "parameters": 25557032,
      "created_at": "2024-01-15T10:30:00Z",
      "updated_at": "2024-01-15T10:30:00Z"
    }
  ],
  "pagination": {
    "total": 247,
    "limit": 10,
    "offset": 0,
    "has_more": true
  }
}
POST /models/deploy

Deploy a model to create a scalable inference endpoint.

Request Body

Field Type Required Description
model_id string Yes ID of the model to deploy
name string Yes Unique name for the deployment
config object No Deployment configuration options
bash
curl -X POST https://api.aicortex.in/v1/models/deploy \
  -H "Authorization: Bearer $AICORTEX_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "model_id": "resnet50-imagenet",
    "name": "production-classifier",
    "config": {
      "instance_type": "gpu.medium",
      "auto_scaling": {
        "min_instances": 1,
        "max_instances": 10,
        "target_utilization": 70
      },
      "environment": {
        "MODEL_CACHE_SIZE": "2GB"
      }
    }
  }'
json
{
  "deployment": {
    "id": "dep_abc123",
    "name": "production-classifier",
    "model_id": "resnet50-imagenet",
    "status": "deploying",
    "endpoint_url": "https://production-classifier.api.aicortex.in",
    "config": {
      "instance_type": "gpu.medium",
      "auto_scaling": {
        "min_instances": 1,
        "max_instances": 10,
        "target_utilization": 70
      }
    },
    "created_at": "2024-01-20T14:30:00Z",
    "estimated_ready_time": "2024-01-20T14:35:00Z"
  }
}

Inference

POST /predict

Make predictions using a deployed model.

bash
curl -X POST https://api.aicortex.in/v1/predict \
  -H "Authorization: Bearer $AICORTEX_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "deployment_name": "production-classifier",
    "inputs": {
      "image": "https://example.com/image.jpg"
    }
  }'
json
{
  "predictions": [
    {
      "label": "cat",
      "confidence": 0.9543,
      "class_id": 281
    },
    {
      "label": "kitten",
      "confidence": 0.0321,
      "class_id": 285
    },
    {
      "label": "dog",
      "confidence": 0.0089,
      "class_id": 242
    }
  ],
  "request_id": "req_xyz789",
  "processing_time_ms": 145,
  "model_version": "1.0.0"
}

Error Handling

The API uses conventional HTTP response codes to indicate success or failure:

Code Description Common Causes
200 OK - Request successful -
400 Bad Request - Invalid parameters Missing required fields, invalid JSON
401 Unauthorized - Invalid API key Missing or incorrect Authorization header
404 Not Found - Resource doesn't exist Invalid model ID or deployment name
429 Too Many Requests - Rate limited Exceeded API rate limits
500 Internal Server Error Server-side issue, contact support

Error Response Format

json
{
  "error": {
    "code": "INVALID_MODEL_ID",
    "message": "The specified model ID 'invalid-model' does not exist",
    "details": {
      "model_id": "invalid-model",
      "available_models": [
        "resnet50-imagenet",
        "gpt-3.5-turbo",
        "whisper-large-v3"
      ]
    },
    "request_id": "req_error_123"
  }
}

Python SDK

The AICortex Python SDK provides a comprehensive interface for all platform capabilities with type hints, async support, and intelligent error handling.

Installation and Setup

bash
# Install the SDK
pip install aicortex

# Or install with optional dependencies
pip install aicortex[full]  # Includes visualization, async, and dev tools

# Install specific extras
pip install aicortex[async]  # Async support
pip install aicortex[viz]    # Visualization tools
pip install aicortex[dev]    # Development utilities

Client Initialization

python
import aicortex
from aicortex import Client

# Initialize with API key
client = Client(api_key="your_api_key")

# Or use environment variable
# export AICORTEX_API_KEY="your_api_key"
client = Client()

# Test connection
user = client.auth.get_user()
print(f"Connected as: {user.email}")
print(f"Organization: {user.organization}")
print(f"Plan: {user.plan}")

# Access different services
models = client.models
instances = client.instances
data_streams = client.data_streams
cortexflow = client.cortexflow
cortexlogs = client.cortexlogs
python
import asyncio
from aicortex import AsyncClient

async def main():
    # Initialize async client
    async with AsyncClient(api_key="your_api_key") as client:
        
        # Concurrent operations
        tasks = [
            client.models.list(),
            client.instances.list(),
            client.data_streams.list()
        ]
        
        models, instances, streams = await asyncio.gather(*tasks)
        
        print(f"Found {len(models)} models")
        print(f"Found {len(instances)} instances") 
        print(f"Found {len(streams)} data streams")
        
        # Async prediction
        result = await client.models.predict_async(
            deployment_name="my-model",
            inputs={"text": "Hello world"}
        )
        print(f"Prediction: {result.predictions[0].label}")

# Run async example
asyncio.run(main())
python
from aicortex import Client, Config
import logging

# Advanced configuration
config = Config(
    api_key="your_api_key",
    base_url="https://api.aicortex.in/v1",
    timeout=30.0,
    max_retries=3,
    retry_backoff_factor=2.0,
    verify_ssl=True,
    user_agent="MyApp/1.0",
    default_headers={
        "X-App-Version": "1.0.0",
        "X-Environment": "production"
    }
)

client = Client(config=config)

# Enable debug logging
logging.basicConfig(level=logging.DEBUG)
aicortex.enable_debug_logging()

# Configure retry behavior
client.configure_retries(
    max_retries=5,
    backoff_factor=1.5,
    status_forcelist=[429, 500, 502, 503, 504]
)

# Configure timeouts per operation type
client.configure_timeouts({
    "predict": 60.0,      # Prediction requests
    "deploy": 300.0,      # Deployment operations  
    "train": 3600.0,      # Training operations
    "upload": 600.0       # File uploads
})

Core SDK Features

Type Safety and IDE Support

python
from aicortex.types import (
    Model, Deployment, TrainingJob, 
    PredictionResult, DeploymentConfig
)
from typing import List, Optional

# Fully typed responses
def deploy_model(model_id: str, config: DeploymentConfig) -> Deployment:
    deployment = client.models.deploy(
        model_id=model_id,
        name=f"deployment-{model_id}",
        config=config
    )
    return deployment

# IDE autocomplete and type checking
def get_models_by_category(category: str) -> List[Model]:
    models: List[Model] = client.models.list(category=category)
    return [model for model in models if model.accuracy > 0.9]

# Optional parameters with defaults
def predict_with_options(
    deployment_name: str,
    inputs: dict,
    temperature: Optional[float] = None,
    max_tokens: Optional[int] = None
) -> PredictionResult:
    return client.models.predict(
        deployment_name=deployment_name,
        inputs=inputs,
        temperature=temperature,
        max_tokens=max_tokens
    )

Error Handling and Retries

python
from aicortex.exceptions import (
    AICortexError, AuthenticationError, RateLimitError,
    ModelNotFoundError, DeploymentError, ValidationError
)
import time
import random

# Comprehensive error handling
def robust_prediction(deployment_name: str, inputs: dict, max_retries: int = 3):
    for attempt in range(max_retries):
        try:
            result = client.models.predict(
                deployment_name=deployment_name,
                inputs=inputs
            )
            return result
            
        except RateLimitError as e:
            if attempt < max_retries - 1:
                # Exponential backoff with jitter
                delay = (2 ** attempt) + random.uniform(0, 1)
                print(f"Rate limited. Retrying in {delay:.1f}s...")
                time.sleep(delay)
                continue
            raise
            
        except ModelNotFoundError:
            print(f"Model {deployment_name} not found")
            raise
            
        except DeploymentError as e:
            print(f"Deployment error: {e.message}")
            if e.is_retryable and attempt < max_retries - 1:
                time.sleep(5)
                continue
            raise
            
        except ValidationError as e:
            print(f"Input validation failed: {e.details}")
            raise  # Don't retry validation errors
            
        except AICortexError as e:
            print(f"API error: {e.message} (Code: {e.error_code})")
            raise

# Context manager for automatic cleanup
from aicortex.context import deployment_context

with deployment_context("temp-model", auto_cleanup=True) as deployment:
    # Deployment is automatically cleaned up on exit
    result = client.models.predict(
        deployment_name=deployment.name,
        inputs={"text": "Hello world"}
    )
    print(result.predictions[0].label)
# Deployment automatically deleted here

Batch Operations and Streaming

python
# Batch predictions
batch_inputs = [
    {"text": "I love this product!"},
    {"text": "This is terrible."},
    {"text": "It's okay, nothing special."}
]

# Process batch with progress tracking
results = client.models.predict_batch(
    deployment_name="sentiment-analyzer",
    inputs=batch_inputs,
    batch_size=10,
    show_progress=True
)

for i, result in enumerate(results):
    print(f"Input {i+1}: {result.predictions[0].label}")

# Streaming predictions for real-time processing
def process_stream():
    for data in client.data_streams.stream("real-time-data"):
        try:
            result = client.models.predict(
                deployment_name="real-time-classifier",
                inputs=data
            )
            
            # Process result
            yield {
                "input_id": data.get("id"),
                "prediction": result.predictions[0].label,
                "confidence": result.predictions[0].confidence,
                "timestamp": time.time()
            }
            
        except Exception as e:
            print(f"Error processing {data.get('id')}: {e}")
            continue

# Consume streaming results
for prediction in process_stream():
    print(f"Processed {prediction['input_id']}: {prediction['prediction']}")

SDK Utilities and Helpers

python
# Built-in utilities
from aicortex.utils import (
    format_size, estimate_cost, validate_inputs,
    benchmark_model, optimize_batch_size
)

# Format and display information
model = client.models.get("large-language-model")
print(f"Model size: {format_size(model.size_bytes)}")
print(f"Parameters: {model.parameters:,}")

# Cost estimation
estimated_cost = estimate_cost(
    model_id="gpt-3.5-turbo",
    input_tokens=1000,
    output_tokens=500,
    requests_per_day=10000
)
print(f"Estimated monthly cost: ${estimated_cost:.2f}")

# Input validation
validation_result = validate_inputs(
    model_id="image-classifier",
    inputs={"image": "path/to/image.jpg"}
)
if not validation_result.is_valid:
    print(f"Validation errors: {validation_result.errors}")

# Benchmark model performance
benchmark_results = benchmark_model(
    deployment_name="my-model",
    test_data=test_dataset,
    metrics=["accuracy", "latency", "throughput"]
)
print(f"Accuracy: {benchmark_results.accuracy:.2%}")
print(f"Avg latency: {benchmark_results.avg_latency}ms")

# Optimize batch size for throughput
optimal_batch_size = optimize_batch_size(
    deployment_name="my-model",
    sample_inputs=sample_data,
    target_latency="2s",
    max_batch_size=64
)
print(f"Optimal batch size: {optimal_batch_size}")

JavaScript SDK

The AICortex JavaScript SDK provides full platform access for Node.js and browser environments with TypeScript support, promise-based APIs, and streaming capabilities.

Installation

bash
# Install with npm
npm install @aicortex/client

# Install with yarn
yarn add @aicortex/client

# Install with pnpm
pnpm add @aicortex/client

# Install with TypeScript support (included by default)
npm install @aicortex/client @types/node

Client Initialization

javascript
const { AICortexClient } = require('@aicortex/client');

// Initialize client
const client = new AICortexClient({
  apiKey: 'your_api_key',
  baseURL: 'https://api.aicortex.in/v1',
  timeout: 30000,
  retries: 3
});

// Test connection
async function testConnection() {
  try {
    const user = await client.auth.getUser();
    console.log(`Connected as: ${user.email}`);
    console.log(`Organization: ${user.organization}`);
  } catch (error) {
    console.error('Connection failed:', error.message);
  }
}

testConnection();

// Basic prediction
async function makePrediction() {
  const result = await client.models.predict({
    deploymentName: 'image-classifier',
    inputs: {
      image: 'https://example.com/image.jpg'
    }
  });
  
  console.log('Predictions:', result.predictions);
  return result.predictions[0];
}

// Deploy a model
async function deployModel() {
  const deployment = await client.models.deploy({
    modelId: 'resnet50-imagenet',
    name: 'production-classifier',
    config: {
      instanceType: 'gpu.small',
      autoScaling: {
        minInstances: 1,
        maxInstances: 5
      }
    }
  });
  
  console.log(`Deployment created: ${deployment.id}`);
  
  // Wait for deployment to be ready
  await deployment.waitUntilReady({ timeout: 300000 });
  console.log(`Deployment ready: ${deployment.endpointUrl}`);
  
  return deployment;
}
html



    AICortex Browser Example
    


    
    
    
typescript
import { 
  AICortexClient, 
  Model, 
  Deployment, 
  PredictionResult,
  DeploymentConfig,
  TrainingJob
} from '@aicortex/client';

// Typed client initialization
const client = new AICortexClient({
  apiKey: process.env.AICORTEX_API_KEY!,
  timeout: 30000,
  retries: 3
});

// Typed functions with interfaces
interface ImageClassificationInput {
  image: string | File | Buffer;
}

interface ImageClassificationOutput {
  label: string;
  confidence: number;
  classId: number;
}

// Strongly typed prediction function
async function classifyImage(
  deploymentName: string, 
  image: string | File | Buffer
): Promise {
  const result: PredictionResult = await client.models.predict({
    deploymentName,
    inputs: { image }
  });
  
  return result.predictions as ImageClassificationOutput[];
}

// Typed deployment configuration
const deploymentConfig: DeploymentConfig = {
  instanceType: 'gpu.medium',
  autoScaling: {
    minInstances: 1,
    maxInstances: 10,
    targetUtilization: 70
  },
  environment: {
    MODEL_CACHE_SIZE: '2GB',
    BATCH_SIZE: '32'
  }
};

// Generic model deployment function
async function deployModel(
  modelId: string,
  name: string,
  config?: DeploymentConfig
): Promise {
  const deployment = await client.models.deploy({
    modelId,
    name,
    config: config || deploymentConfig
  });
  
  console.log(`Deploying ${modelId} as ${name}...`);
  await deployment.waitUntilReady();
  console.log(`Deployment ready: ${deployment.endpointUrl}`);
  
  return deployment;
}

// Error handling with custom types
class ModelDeploymentError extends Error {
  constructor(
    message: string,
    public readonly deploymentId: string,
    public readonly errorCode: string
  ) {
    super(message);
    this.name = 'ModelDeploymentError';
  }
}

async function safeModelDeployment(
  modelId: string,
  name: string
): Promise {
  try {
    return await deployModel(modelId, name);
  } catch (error: any) {
    if (error.code === 'INSUFFICIENT_QUOTA') {
      throw new ModelDeploymentError(
        'Insufficient quota for deployment',
        error.deploymentId,
        error.code
      );
    }
    
    console.error('Deployment failed:', error.message);
    return null;
  }
}

// Async iteration with TypeScript
async function* processTrainingMetrics(
  trainingJobId: string
): AsyncGenerator<{ step: number; loss: number; accuracy: number }> {
  const job = await client.cortexflow.getTrainingJob(trainingJobId);
  
  for await (const metric of job.streamMetrics()) {
    yield {
      step: metric.step,
      loss: metric.loss,
      accuracy: metric.accuracy
    };
  }
}

// Usage with async iteration
async function monitorTraining(jobId: string): Promise {
  for await (const metric of processTrainingMetrics(jobId)) {
    console.log(`Step ${metric.step}: Loss=${metric.loss.toFixed(4)}, Acc=${metric.accuracy.toFixed(2)}%`);
    
    if (metric.accuracy > 0.95) {
      console.log('Target accuracy reached!');
      break;
    }
  }
}

Advanced Features

Streaming and Real-time Processing

javascript
// Streaming predictions
async function streamingInference() {
  const stream = client.models.predictStream({
    deploymentName: 'text-generator',
    inputs: {
      prompt: 'Write a story about',
      maxTokens: 500,
      stream: true
    }
  });

  console.log('Streaming response:');
  for await (const chunk of stream) {
    process.stdout.write(chunk.text);
  }
  console.log('\nStream completed');
}

// Server-Sent Events for real-time updates
function monitorDeployment(deploymentName) {
  const eventSource = client.deployments.createEventStream(deploymentName);
  
  eventSource.addEventListener('status_change', (event) => {
    console.log('Status update:', JSON.parse(event.data));
  });
  
  eventSource.addEventListener('metric_update', (event) => {
    const metrics = JSON.parse(event.data);
    console.log(`CPU: ${metrics.cpu}%, Memory: ${metrics.memory}%`);
  });
  
  eventSource.addEventListener('error', (event) => {
    console.error('Deployment error:', event.data);
  });
  
  // Clean up after 1 hour
  setTimeout(() => {
    eventSource.close();
  }, 3600000);
}

// WebSocket connection for bi-directional communication
async function setupWebSocketConnection() {
  const ws = await client.createWebSocket({
    protocols: ['inference', 'monitoring'],
    heartbeat: true
  });

  ws.on('open', () => {
    console.log('WebSocket connected');
    
    // Send inference request
    ws.send({
      type: 'predict',
      deployment: 'real-time-model',
      data: { text: 'Hello world' }
    });
  });

  ws.on('message', (data) => {
    const message = JSON.parse(data);
    
    switch (message.type) {
      case 'prediction':
        console.log('Prediction:', message.result);
        break;
      case 'status':
        console.log('Status:', message.status);
        break;
      case 'error':
        console.error('Error:', message.error);
        break;
    }
  });

  ws.on('close', () => {
    console.log('WebSocket disconnected');
  });

  return ws;
}

File Upload and Processing

javascript
const fs = require('fs');
const path = require('path');

// Upload large files with progress tracking
async function uploadLargeFile(filePath, onProgress) {
  const fileSize = fs.statSync(filePath).size;
  const stream = fs.createReadStream(filePath);
  
  const uploadResult = await client.files.upload({
    stream,
    filename: path.basename(filePath),
    size: fileSize,
    onProgress: (uploaded, total) => {
      const percentage = (uploaded / total) * 100;
      onProgress(`Upload progress: ${percentage.toFixed(1)}%`);
    }
  });
  
  console.log(`File uploaded: ${uploadResult.fileId}`);
  return uploadResult;
}

// Batch file processing
async function processBatchFiles(fileUrls) {
  const batchSize = 10;
  const results = [];
  
  for (let i = 0; i < fileUrls.length; i += batchSize) {
    const batch = fileUrls.slice(i, i + batchSize);
    
    const batchPromises = batch.map(async (url, index) => {
      try {
        const result = await client.models.predict({
          deploymentName: 'document-processor',
          inputs: { document: url }
        });
        
        console.log(`Processed file ${i + index + 1}/${fileUrls.length}`);
        return { url, result: result.predictions[0], success: true };
        
      } catch (error) {
        console.error(`Failed to process ${url}:`, error.message);
        return { url, error: error.message, success: false };
      }
    });
    
    const batchResults = await Promise.allSettled(batchPromises);
    results.push(...batchResults.map(r => r.value || r.reason));
    
    // Small delay between batches to avoid rate limiting
    if (i + batchSize < fileUrls.length) {
      await new Promise(resolve => setTimeout(resolve, 1000));
    }
  }
  
  return results;
}

// Multipart upload for very large files
async function uploadVeryLargeFile(filePath) {
  const fileSize = fs.statSync(filePath).size;
  const chunkSize = 10 * 1024 * 1024; // 10MB chunks
  
  // Initialize multipart upload
  const upload = await client.files.createMultipartUpload({
    filename: path.basename(filePath),
    size: fileSize,
    chunkSize
  });
  
  const chunks = Math.ceil(fileSize / chunkSize);
  const uploadPromises = [];
  
  for (let i = 0; i < chunks; i++) {
    const start = i * chunkSize;
    const end = Math.min(start + chunkSize, fileSize);
    const chunk = fs.createReadStream(filePath, { start, end: end - 1 });
    
    uploadPromises.push(
      client.files.uploadChunk({
        uploadId: upload.uploadId,
        chunkNumber: i + 1,
        data: chunk
      })
    );
  }
  
  // Upload chunks in parallel (with concurrency limit)
  const chunkResults = await Promise.all(uploadPromises);
  
  // Complete multipart upload
  const finalResult = await client.files.completeMultipartUpload({
    uploadId: upload.uploadId,
    chunks: chunkResults
  });
  
  console.log(`Large file uploaded successfully: ${finalResult.fileId}`);
  return finalResult;
}

Webhooks

Webhooks allow you to receive real-time notifications about events in your AICortex account, enabling you to build reactive applications and automate workflows.

Webhook Events

AICortex sends webhooks for various platform events:

Event Type Description Payload Example
deployment.created New model deployment created Deployment details and status
deployment.ready Deployment is ready for inference Endpoint URL and configuration
deployment.failed Deployment failed with error Error details and failure reason
training.started Training job started Job configuration and status
training.completed Training job completed successfully Final metrics and model artifacts
training.failed Training job failed Error logs and failure details
instance.started GPU instance started Instance details and endpoints
instance.stopped GPU instance stopped Runtime duration and cost
billing.threshold Billing threshold exceeded Current usage and threshold details
alert.triggered Monitoring alert triggered Alert details and metric values

Setting Up Webhooks

python
# Create webhook endpoint
webhook = client.webhooks.create({
    "url": "https://your-app.com/webhooks/aicortex",
    "events": [
        "deployment.created",
        "deployment.ready", 
        "deployment.failed",
        "training.completed",
        "training.failed",
        "billing.threshold"
    ],
    "secret": "your_webhook_secret",  # For signature verification
    "description": "Production webhook for AI pipeline",
    "active": True,
    "retry_config": {
        "max_retries": 3,
        "retry_delay": "5s",
        "backoff_factor": 2.0
    },
    "filters": {
        "deployment_names": ["production-*"],  # Only production deployments
        "user_ids": ["user_123", "user_456"],  # Specific users only
        "severity": ["high", "critical"]       # Only important alerts
    }
})

print(f"Webhook created: {webhook.id}")
print(f"Secret: {webhook.secret}")  # Store this securely

# Update webhook configuration
client.webhooks.update(webhook.id, {
    "events": [
        "deployment.created",
        "deployment.ready",
        "deployment.failed",
        "training.completed",
        "alert.triggered"  # Added alert events
    ],
    "active": True
})

# Test webhook endpoint
test_result = client.webhooks.test(webhook.id)
print(f"Webhook test: {test_result.status}")
if test_result.response_code != 200:
    print(f"Error: {test_result.error_message}")
python
import hmac
import hashlib
import json
from flask import Flask, request, jsonify

app = Flask(__name__)
WEBHOOK_SECRET = "your_webhook_secret"

def verify_webhook_signature(payload, signature, secret):
    """Verify webhook signature for security"""
    expected_signature = hmac.new(
        secret.encode('utf-8'),
        payload,
        hashlib.sha256
    ).hexdigest()
    
    # Compare signatures using constant-time comparison
    return hmac.compare_digest(f"sha256={expected_signature}", signature)

@app.route('/webhooks/aicortex', methods=['POST'])
def handle_webhook():
    # Get signature from headers
    signature = request.headers.get('X-AICortex-Signature')
    if not signature:
        return jsonify({"error": "Missing signature"}), 401
    
    # Get raw payload
    payload = request.get_data()
    
    # Verify signature
    if not verify_webhook_signature(payload, signature, WEBHOOK_SECRET):
        return jsonify({"error": "Invalid signature"}), 401
    
    # Parse event data
    try:
        event = json.loads(payload)
    except json.JSONDecodeError:
        return jsonify({"error": "Invalid JSON"}), 400
    
    # Process the event
    try:
        process_webhook_event(event)
        return jsonify({"status": "success"}), 200
    except Exception as e:
        print(f"Error processing webhook: {e}")
        return jsonify({"error": "Processing failed"}), 500

def process_webhook_event(event):
    """Process incoming webhook events"""
    event_type = event.get('type')
    event_data = event.get('data')
    
    print(f"Received event: {event_type}")
    
    if event_type == 'deployment.ready':
        handle_deployment_ready(event_data)
    elif event_type == 'deployment.failed':
        handle_deployment_failed(event_data)
    elif event_type == 'training.completed':
        handle_training_completed(event_data)
    elif event_type == 'billing.threshold':
        handle_billing_alert(event_data)
    else:
        print(f"Unhandled event type: {event_type}")

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000)
python
import requests
import os
from datetime import datetime

def handle_deployment_ready(data):
    """Handle successful deployment"""
    deployment_name = data['deployment']['name']
    endpoint_url = data['deployment']['endpoint_url']
    
    print(f"✅ Deployment {deployment_name} is ready!")
    print(f"   Endpoint: {endpoint_url}")
    
    # Update deployment status in your system
    update_deployment_status(deployment_name, 'ready', endpoint_url)
    
    # Run smoke tests
    run_deployment_tests(deployment_name)
    
    # Notify team via Slack
    send_slack_notification(
        channel="#ai-deployments",
        message=f"🚀 Deployment `{deployment_name}` is ready for production use!",
        color="good"
    )

def handle_deployment_failed(data):
    """Handle failed deployment"""
    deployment_name = data['deployment']['name']
    error_message = data['error']['message']
    error_code = data['error']['code']
    
    print(f"❌ Deployment {deployment_name} failed!")
    print(f"   Error: {error_message} (Code: {error_code})")
    
    # Update status and trigger alerts
    update_deployment_status(deployment_name, 'failed', None)
    
    # Create incident ticket
    create_incident_ticket(
        title=f"Deployment Failed: {deployment_name}",
        description=f"Error: {error_message}\nCode: {error_code}",
        priority="high"
    )
    
    # Send alert to oncall
    send_pagerduty_alert(
        summary=f"AICortex deployment failed: {deployment_name}",
        severity="error",
        details={
            "deployment": deployment_name,
            "error": error_message,
            "error_code": error_code
        }
    )

def handle_training_completed(data):
    """Handle completed training job"""
    job_id = data['training_job']['id']
    job_name = data['training_job']['name']
    metrics = data['training_job']['final_metrics']
    model_id = data['model']['id']
    
    print(f"🎉 Training job {job_name} completed!")
    print(f"   Final accuracy: {metrics['accuracy']:.2%}")
    print(f"   Model ID: {model_id}")
    
    # Check if model meets quality threshold
    if metrics['accuracy'] >= 0.90:
        # Automatically deploy high-quality models
        auto_deploy_model(model_id, f"auto-{job_name}-{datetime.now().strftime('%Y%m%d')}")
        
        send_slack_notification(
            channel="#ai-training",
            message=f"🏆 Training job `{job_name}` achieved {metrics['accuracy']:.1%} accuracy! Auto-deploying...",
            color="good"
        )
    else:
        send_slack_notification(
            channel="#ai-training", 
            message=f"⚠️ Training job `{job_name}` completed with {metrics['accuracy']:.1%} accuracy (below 90% threshold)",
            color="warning"
        )

def handle_billing_alert(data):
    """Handle billing threshold alerts"""
    current_usage = data['usage']['current']
    threshold = data['usage']['threshold']
    percentage = data['usage']['percentage']
    
    print(f"💰 Billing alert: {percentage:.1%} of budget used")
    print(f"   Current: ${current_usage:.2f} / ${threshold:.2f}")
    
    # Send budget alert
    send_email_alert(
        recipients=["finance@company.com", "ai-team@company.com"],
        subject=f"AICortex Budget Alert: {percentage:.0%} Used",
        body=f"""
        Your AICortex usage has reached {percentage:.1%} of the monthly budget.
        
        Current Usage: ${current_usage:.2f}
        Budget Limit: ${threshold:.2f}
        Remaining: ${threshold - current_usage:.2f}
        
        Please review your usage and optimize as needed.
        """
    )
    
    # If over 90%, take automated actions
    if percentage >= 0.90:
        # Scale down non-critical deployments
        scale_down_dev_deployments()
        
        # Send urgent alert
        send_pagerduty_alert(
            summary=f"AICortex budget 90% exceeded",
            severity="warning",
            details={"usage": current_usage, "budget": threshold}
        )

def send_slack_notification(channel, message, color="gray"):
    """Send notification to Slack"""
    webhook_url = os.getenv('SLACK_WEBHOOK_URL')
    if not webhook_url:
        return
    
    payload = {
        "channel": channel,
        "attachments": [{
            "color": color,
            "text": message,
            "ts": datetime.now().timestamp()
        }]
    }
    
    requests.post(webhook_url, json=payload)

def auto_deploy_model(model_id, deployment_name):
    """Automatically deploy a high-quality model"""
    try:
        deployment = client.models.deploy(
            model_id=model_id,
            name=deployment_name,
            config={
                "instance_type": "gpu.small",
                "auto_scaling": {"min_instances": 1, "max_instances": 3}
            }
        )
        print(f"Auto-deployment started: {deployment.id}")
    except Exception as e:
        print(f"Auto-deployment failed: {e}")

Webhook Security

🔒 Security Best Practices:
  • • Always verify webhook signatures using the provided secret
  • • Use HTTPS endpoints to encrypt webhook data in transit
  • • Implement rate limiting to prevent webhook flooding
  • • Log webhook events for debugging and audit purposes
  • • Handle webhook retries gracefully (events may be delivered multiple times)

Webhook Management

python
# List all webhooks
webhooks = client.webhooks.list()
for webhook in webhooks:
    print(f"Webhook {webhook.id}: {webhook.url}")
    print(f"  Events: {', '.join(webhook.events)}")
    print(f"  Active: {webhook.active}")
    print(f"  Success rate: {webhook.success_rate:.1%}")

# Get webhook delivery logs
deliveries = client.webhooks.get_deliveries(webhook_id, limit=50)
for delivery in deliveries:
    print(f"[{delivery.timestamp}] {delivery.event_type}")
    print(f"  Status: {delivery.status_code} - {delivery.status}")
    print(f"  Response time: {delivery.response_time}ms")

# Retry failed deliveries
failed_deliveries = [d for d in deliveries if d.status != 'success']
for delivery in failed_deliveries:
    retry_result = client.webhooks.retry_delivery(delivery.id)
    print(f"Retried delivery {delivery.id}: {retry_result.status}")

# Pause webhook temporarily
client.webhooks.pause(webhook_id)
print("Webhook paused")

# Resume webhook
client.webhooks.resume(webhook_id)
print("Webhook resumed")

# Delete webhook
client.webhooks.delete(webhook_id)
print("Webhook deleted")

Auth Module

The Auth Module provides enterprise-grade authentication and authorization capabilities with role-based access control (RBAC), single sign-on (SSO) integration, and comprehensive audit logging.

Role-Based Access Control (RBAC)

AICortex implements a hierarchical permission system with three main user roles:

👥 User

Standard access for developers and data scientists

  • • Access to ZeroCore and CortexFlow
  • • Deploy models from Model Hub
  • • View personal projects and logs
  • • Cannot manage instances or users

⚙️ Admin

Team management and resource oversight

  • • All User permissions
  • • Manage team members and roles
  • • View organization-wide analytics
  • • Configure billing and quotas

🔑 Super Admin

Full platform control and infrastructure management

  • • All Admin permissions
  • • Manage GPU instances and infrastructure
  • • System-wide configuration
  • • Security and compliance settings

Single Sign-On (SSO) Integration

Seamlessly integrate with your existing identity providers:

Provider Protocol Features Enterprise
Azure AD SAML 2.0 / OAuth 2.0 Groups, conditional access
Google Workspace OAuth 2.0 / OpenID Domain verification, groups
Okta SAML 2.0 Advanced MFA, lifecycle management
Active Directory LDAP On-premises integration

SSO Configuration

python
# Configure SSO settings
client.auth.configure_sso({
    "provider": "azure_ad",
    "domain": "yourcompany.com",
    "client_id": "your_azure_client_id",
    "tenant_id": "your_azure_tenant_id",
    "auto_provision": True,
    "default_role": "user",
    "group_mappings": {
        "ai-team": "admin",
        "data-scientists": "user"
    }
})

# Test SSO configuration
test_result = client.auth.test_sso_config()
print(f"SSO Test: {test_result.status}")

Audit Logging

Comprehensive logging of all authentication and authorization events:

GET /auth/audit-logs

Retrieve authentication and authorization audit logs.

python
# Get audit logs
logs = client.auth.get_audit_logs(
    start_date="2024-01-01",
    end_date="2024-01-31",
    event_types=["login", "permission_change", "api_key_created"]
)

for log in logs:
    print(f"{log.timestamp}: {log.user_email} - {log.event_type}")
    print(f"  IP: {log.ip_address}, Status: {log.status}")

Instance Management

The Instance Management service provides serverless GPU orchestration with automatic scaling, multi-cloud support, and real-time monitoring of compute resources.

GPU Instance Types

Choose from a variety of GPU instances optimized for different AI workloads:

Instance Type GPU VRAM vCPU RAM Best For $/hour
gpu.nano T4 16 GB 4 16 GB Small models, inference $0.30
gpu.small T4 16 GB 8 32 GB Image classification, NLP $0.50
gpu.medium V100 32 GB 8 64 GB Training, large models $1.20
gpu.large A100 80 GB 16 128 GB LLMs, distributed training $3.00
gpu.xlarge H100 80 GB 32 256 GB Large scale training $8.00

Instance Operations

Programmatically manage your GPU instances with start, stop, restart, and monitoring operations:

python
# Create and start a new GPU instance
instance = client.instances.create(
    name="training-instance-1",
    instance_type="gpu.medium",
    region="us-west-2",
    config={
        "auto_shutdown": "1h",  # Auto-shutdown after 1 hour of inactivity
        "max_runtime": "24h",   # Maximum runtime limit
        "storage_size": "100GB"
    }
)

print(f"Instance created: {instance.id}")
print(f"Status: {instance.status}")

# Wait for instance to be ready
instance.wait_until_ready(timeout=300)
print(f"Instance ready! Endpoint: {instance.ssh_endpoint}")

# Monitor instance metrics
metrics = client.instances.get_metrics(instance.id, period="5m")
print(f"GPU Utilization: {metrics.gpu_utilization}%")
print(f"Memory Usage: {metrics.memory_usage}%")

# Stop the instance
instance.stop()
print("Instance stopped")

# List all instances
instances = client.instances.list()
for inst in instances:
    print(f"{inst.name}: {inst.status} ({inst.instance_type})")
bash
# Create instance
curl -X POST https://api.aicortex.in/v1/instances \
  -H "Authorization: Bearer $AICORTEX_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "name": "training-instance-1",
    "instance_type": "gpu.medium",
    "region": "us-west-2",
    "config": {
      "auto_shutdown": "1h",
      "max_runtime": "24h"
    }
  }'

# Start instance
curl -X POST https://api.aicortex.in/v1/instances/inst_123/start \
  -H "Authorization: Bearer $AICORTEX_API_KEY"

# Stop instance  
curl -X POST https://api.aicortex.in/v1/instances/inst_123/stop \
  -H "Authorization: Bearer $AICORTEX_API_KEY"

# Get instance status
curl -H "Authorization: Bearer $AICORTEX_API_KEY" \
     https://api.aicortex.in/v1/instances/inst_123

Auto-Scaling Configuration

Configure automatic scaling policies to optimize cost and performance:

python
# Configure auto-scaling for a deployment
scaling_config = {
    "min_instances": 1,
    "max_instances": 10,
    "target_metrics": {
        "gpu_utilization": 70,
        "queue_depth": 5,
        "response_time": "2s"
    },
    "scale_up_policy": {
        "cooldown": "2m",
        "step_size": 2
    },
    "scale_down_policy": {
        "cooldown": "5m", 
        "step_size": 1
    }
}

client.instances.configure_autoscaling("my-deployment", scaling_config)

# Monitor scaling events
events = client.instances.get_scaling_events("my-deployment")
for event in events:
    print(f"{event.timestamp}: {event.action} - {event.reason}")

Data Input Streams

The Data Input Streams service provides multi-source data ingestion capabilities, supporting real-time streaming, batch processing, and integration with popular data platforms.

Supported Data Sources

Connect to various data sources with built-in connectors and APIs:

Amazon S3

Object storage with versioning and lifecycle management.

Stable

Google Drive

Direct integration with Google Drive files and folders.

Stable

Apache Kafka

Real-time streaming data processing and ingestion.

Stable

Vector Databases

Pinecone, Weaviate, and Qdrant integration for embeddings.

Beta

Custom APIs

REST API connectors with authentication and rate limiting.

Stable

Databases

PostgreSQL, MySQL, MongoDB, and Snowflake connections.

Stable

Data Stream Configuration

Configure data streams with transformation, filtering, and routing capabilities:

python
# Configure S3 data stream
s3_stream = client.data_streams.create({
    "name": "s3-training-data",
    "type": "s3",
    "config": {
        "bucket": "my-training-bucket",
        "prefix": "datasets/images/",
        "region": "us-west-2",
        "file_pattern": "*.jpg",
        "batch_size": 100,
        "polling_interval": "5m"
    },
    "transformations": [
        {
            "type": "resize_image",
            "params": {"width": 224, "height": 224}
        },
        {
            "type": "normalize",
            "params": {"mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225]}
        }
    ],
    "output": {
        "format": "pytorch_dataset",
        "destination": "training_pipeline"
    }
})

# Monitor stream status
status = client.data_streams.get_status("s3-training-data")
print(f"Processed: {status.files_processed}")
print(f"Errors: {status.error_count}")
python
# Configure Kafka streaming data
kafka_stream = client.data_streams.create({
    "name": "real-time-inference",
    "type": "kafka",
    "config": {
        "bootstrap_servers": ["kafka1:9092", "kafka2:9092"],
        "topic": "inference_requests",
        "consumer_group": "aicortex_group",
        "auto_offset_reset": "latest",
        "security_protocol": "SASL_SSL",
        "sasl_mechanism": "PLAIN",
        "sasl_username": "your_username",
        "sasl_password": "your_password"
    },
    "transformations": [
        {
            "type": "json_parse",
            "params": {"schema": "inference_schema"}
        },
        {
            "type": "validate",
            "params": {"required_fields": ["image_url", "model_id"]}
        }
    ],
    "output": {
        "destination": "inference_pipeline",
        "response_topic": "inference_results"
    }
})

# Process streaming data
def process_stream_message(message):
    result = client.models.predict(
        deployment_name=message["model_id"],
        inputs={"image": message["image_url"]}
    )
    return {"prediction": result.predictions[0].label, "confidence": result.predictions[0].confidence}

client.data_streams.start_processor("real-time-inference", process_stream_message)
python
# Configure custom API data stream
api_stream = client.data_streams.create({
    "name": "external-api-data",
    "type": "api",
    "config": {
        "url": "https://api.example.com/data",
        "method": "GET",
        "headers": {
            "Authorization": "Bearer your_api_token",
            "Content-Type": "application/json"
        },
        "pagination": {
            "type": "offset",
            "limit_param": "limit",
            "offset_param": "offset",
            "page_size": 100
        },
        "rate_limit": {
            "requests_per_second": 10,
            "burst_size": 50
        },
        "schedule": "0 */6 * * *"  # Every 6 hours
    },
    "transformations": [
        {
            "type": "extract_fields",
            "params": {"fields": ["id", "text", "timestamp", "labels"]}
        },
        {
            "type": "filter",
            "params": {"condition": "timestamp > yesterday"}
        }
    ]
})

# Manual trigger for API stream
result = client.data_streams.trigger("external-api-data")
print(f"Fetched {result.records_count} records")

Data Governance

Built-in data governance features ensure compliance and security:

  • Encryption: Data encrypted in transit and at rest using AES-256
  • Access Control: Fine-grained permissions and audit trails
  • Data Lineage: Track data from source to model deployment
  • Compliance: GDPR, CCPA, and SOC 2 compliance features
  • Data Quality: Automatic validation and quality checks

ZeroCore

ZeroCore is an intelligent development platform that provides a secure Python sandbox environment with guided workflows, pre-approved modules, and integrated development tools.

Secure Python Sandbox

ZeroCore runs in a restricted execution environment designed for security and collaboration:

🔒 Security Features:
  • • Sandboxed Python execution prevents code injection
  • • Restricted file system access with quota limits
  • • Network access limited to approved APIs
  • • No direct access to data sources (must use Data Streams)

Pre-Approved Module Library

Access to curated Python packages optimized for AI development:

Category Packages Description
ML Frameworks torch, tensorflow, jax, scikit-learn Core machine learning libraries
Data Processing pandas, numpy, polars, dask Data manipulation and analysis
Visualization matplotlib, seaborn, plotly, altair Charts and data visualization
Computer Vision opencv, pillow, torchvision, albumentations Image processing and augmentation
NLP transformers, spacy, nltk, tokenizers Natural language processing

Jupyter Notebook Integration

Interactive development environment with enhanced capabilities:

python
# ZeroCore notebook with AICortex integration
import aicortex.zerocore as zc

# Access data streams directly in notebook
data = zc.load_stream("training-data-stream")
print(f"Loaded {len(data)} samples")

# Use pre-trained models
model = zc.load_model("resnet50-imagenet")
predictions = model.predict(data[:10])

# Visualize results with automatic plotting
zc.plot.confusion_matrix(predictions, labels)
zc.plot.feature_importance(model, data.columns)

# Save work to Model Hub
zc.save_notebook("image-classifier-experiment-v1")

# Deploy directly from notebook
deployment = zc.deploy_model(
    model=model,
    name="notebook-classifier",
    instance_type="gpu.small"
)

print(f"Model deployed: {deployment.endpoint_url}")

File Management

Organized file system with version control and collaboration features:

python
# File management in ZeroCore
import aicortex.zerocore.files as zcf

# Upload files
zcf.upload("local_dataset.csv", "datasets/experiment_1/")

# List files in workspace
files = zcf.list("datasets/")
for file in files:
    print(f"{file.name} ({file.size} bytes) - {file.modified}")

# Create shareable links
link = zcf.create_share_link("models/trained_model.pkl", expires="7d")
print(f"Share link: {link.url}")

# Version control
zcf.commit("datasets/processed_data.csv", message="Added feature engineering")
versions = zcf.get_versions("datasets/processed_data.csv")

# Collaborate with team
zcf.share_workspace("ai-team", permissions=["read", "write"])
bash
# ZeroCore CLI commands (available in notebook terminal)

# List files
!zcf ls /workspace/datasets/

# Upload file
!zcf upload local_file.csv /workspace/data/

# Download file  
!zcf download /workspace/models/model.pkl ./

# Sync with external storage
!zcf sync s3://my-bucket/data/ /workspace/datasets/

# Create checkpoint
!zcf checkpoint create "experiment_v1"

# Restore from checkpoint
!zcf checkpoint restore "experiment_v1"

API Endpoints

Publish your notebook code as REST API endpoints:

python
# Create API endpoint from notebook function
@zc.api_endpoint(
    method="POST",
    path="/predict-sentiment",
    description="Analyze sentiment of input text"
)
def analyze_sentiment(text: str) -> dict:
    """Analyze sentiment using pre-trained model"""
    model = zc.load_model("sentiment-analyzer")
    
    result = model.predict(text)
    
    return {
        "text": text,
        "sentiment": result.label,
        "confidence": result.confidence,
        "timestamp": datetime.now().isoformat()
    }

# Publish endpoint
endpoint = zc.publish_endpoint("analyze_sentiment")
print(f"API URL: {endpoint.url}")

# Test endpoint
response = requests.post(endpoint.url, json={"text": "I love this product!"})
print(response.json())

# Monitor endpoint usage
metrics = zc.get_endpoint_metrics("analyze_sentiment")
print(f"Requests today: {metrics.requests_count}")
print(f"Average latency: {metrics.avg_latency}ms")

Collaborative Features

Real-time collaboration and sharing capabilities:

  • Live Collaboration: Multiple users can edit notebooks simultaneously
  • Comments & Reviews: Add comments and request reviews from team members
  • Shared Workspaces: Team workspaces with role-based permissions
  • Version History: Track changes and revert to previous versions
  • Export Options: Export to GitHub, PDF, or standard .ipynb format

Model Hub

The Model Hub is a comprehensive AI model registry that provides access to pre-trained models, custom model development, versioning, and automated deployment infrastructure.

Pre-Trained Model Library

Access hundreds of state-of-the-art models across different domains:

Large Language Models

GPT, Claude, Llama, and specialized NLP models

• Text generation

• Question answering

• Code completion

• Translation

Computer Vision

ResNet, YOLO, Stable Diffusion, and vision transformers

• Image classification

• Object detection

• Image generation

• Semantic segmentation

Audio Processing

Whisper, Wav2Vec, and music generation models

• Speech recognition

• Audio classification

• Music generation

• Voice synthesis

Video Analysis

Action recognition, video generation, and analysis

• Action recognition

• Video summarization

• Motion detection

• Scene understanding

AI Agents

Intelligent agents for automation and decision making

• Task automation

• Decision support

• Multi-modal reasoning

• Tool integration

Time Series

Forecasting and anomaly detection models

• Sales forecasting

• Anomaly detection

• Demand planning

• Financial modeling

Model Search and Discovery

Find the right model for your use case with advanced search and filtering:

python
# Search models by category and requirements
models = client.model_hub.search(
    categories=["computer_vision"],
    tasks=["image_classification"],
    frameworks=["pytorch"],
    max_parameters=100_000_000,  # Under 100M parameters
    min_accuracy=0.85,
    license="commercial"
)

for model in models:
    print(f"{model.name} - {model.accuracy:.2%} accuracy")
    print(f"  Parameters: {model.parameters:,}")
    print(f"  Framework: {model.framework}")
    print(f"  License: {model.license}")

# Get model details
model_info = client.model_hub.get("resnet50-imagenet")
print(f"Description: {model_info.description}")
print(f"Input shape: {model_info.input_shape}")
print(f"Classes: {len(model_info.classes)}")

# Check model benchmarks
benchmarks = client.model_hub.get_benchmarks("resnet50-imagenet")
for benchmark in benchmarks:
    print(f"Dataset: {benchmark.dataset}")
    print(f"Accuracy: {benchmark.accuracy:.2%}")
    print(f"Inference time: {benchmark.inference_time}ms")

Custom Model Development

Upload and manage your own models with full lifecycle support:

python
# Upload custom model to Model Hub
model = client.model_hub.upload(
    name="custom-sentiment-classifier",
    description="Fine-tuned BERT for product review sentiment",
    model_files={
        "model.bin": "path/to/model.bin",
        "config.json": "path/to/config.json",
        "tokenizer.json": "path/to/tokenizer.json"
    },
    inference_code="inference.py",
    requirements="requirements.txt",
    metadata={
        "framework": "transformers",
        "base_model": "bert-base-uncased",
        "task": "text_classification",
        "dataset": "product_reviews",
        "accuracy": 0.92,
        "license": "mit"
    },
    example_input={
        "text": "This product is amazing!"
    },
    example_output={
        "sentiment": "positive",
        "confidence": 0.95
    }
)

print(f"Model uploaded: {model.id}")
print(f"Version: {model.version}")

# Test uploaded model
test_result = client.model_hub.test(
    model_id=model.id,
    inputs={"text": "I love this product!"}
)
print(f"Test result: {test_result}")
python
# Train custom model using CortexFlow
training_job = client.model_hub.train(
    name="custom-image-classifier",
    base_model="resnet18",
    dataset="my-training-dataset",
    training_config={
        "epochs": 50,
        "batch_size": 32,
        "learning_rate": 0.001,
        "optimizer": "adam",
        "loss_function": "cross_entropy",
        "early_stopping": {
            "patience": 10,
            "metric": "val_accuracy"
        }
    },
    compute_config={
        "instance_type": "gpu.medium",
        "num_instances": 2,
        "distributed": True
    },
    hyperparameter_tuning={
        "method": "bayesian",
        "max_trials": 20,
        "parameters": {
            "learning_rate": {"min": 0.0001, "max": 0.01},
            "batch_size": {"choices": [16, 32, 64]},
            "dropout": {"min": 0.1, "max": 0.5}
        }
    }
)

print(f"Training job started: {training_job.id}")

# Monitor training progress
while training_job.status in ["running", "pending"]:
    metrics = training_job.get_metrics()
    print(f"Epoch {metrics.epoch}: Loss={metrics.loss:.4f}, Accuracy={metrics.accuracy:.2%}")
    time.sleep(30)

# Get best model from training
if training_job.status == "completed":
    best_model = training_job.get_best_model()
    print(f"Best model accuracy: {best_model.accuracy:.2%}")
    
    # Save to Model Hub
    model_id = client.model_hub.save(best_model, name="custom-classifier-v1")
    print(f"Model saved: {model_id}")

Model Versioning

Complete lifecycle management with versioning, rollbacks, and A/B testing:

python
# Create new model version
new_version = client.model_hub.create_version(
    model_id="custom-classifier",
    version="2.0.0",
    model_files={"model.bin": "updated_model.bin"},
    changelog="Improved accuracy by 3% with additional training data",
    tags=["production", "improved"]
)

# List all versions
versions = client.model_hub.list_versions("custom-classifier")
for version in versions:
    print(f"v{version.version} - {version.created_at} - {version.status}")

# Deploy specific version
deployment = client.models.deploy(
    model_id="custom-classifier:1.5.0",  # Deploy specific version
    name="classifier-stable"
)

# A/B test between versions
client.deployments.setup_ab_test(
    name="classifier-ab-test",
    variants={
        "version_1": {"model": "custom-classifier:1.5.0", "traffic": 50},
        "version_2": {"model": "custom-classifier:2.0.0", "traffic": 50}
    },
    metrics=["accuracy", "latency", "user_satisfaction"]
)

# Monitor A/B test results
ab_results = client.deployments.get_ab_results("classifier-ab-test")
print(f"Version 1 accuracy: {ab_results.variants['version_1'].accuracy:.2%}")
print(f"Version 2 accuracy: {ab_results.variants['version_2'].accuracy:.2%}")

CortexFlow

CortexFlow is an advanced ML pipeline automation platform that provides distributed training, automated hyperparameter optimization, and seamless integration with the broader AICortex ecosystem.

Training Pipeline Architecture

CortexFlow supports various training paradigms and optimization techniques:

🔄 Training Methods

  • Forward Propagation: Standard neural network training with gradient computation
  • Backward Propagation: Automatic differentiation and gradient-based optimization
  • Transfer Learning: Fine-tune pre-trained models for specific tasks
  • Federated Learning: Privacy-preserving distributed training

⚡ Optimization Features

  • Hyperparameter Tuning: Bayesian optimization and grid search
  • Early Stopping: Prevent overfitting with intelligent stopping criteria
  • Mixed Precision: Faster training with automatic mixed precision
  • Model Compression: Pruning, quantization, and knowledge distillation

Distributed Training

Scale your training across multiple GPUs and nodes for faster convergence:

python
# Configure distributed training job
training_job = client.cortexflow.create_training_job({
    "name": "large-model-training",
    "model_config": {
        "architecture": "transformer",
        "layers": 24,
        "hidden_size": 1024,
        "attention_heads": 16,
        "vocab_size": 50000
    },
    "data_config": {
        "training_data": "s3://my-bucket/training-data/",
        "validation_data": "s3://my-bucket/validation-data/",
        "batch_size": 32,
        "sequence_length": 512
    },
    "distributed_config": {
        "strategy": "data_parallel",  # or "model_parallel", "pipeline_parallel"
        "num_nodes": 4,
        "gpus_per_node": 8,
        "communication_backend": "nccl"
    },
    "training_config": {
        "optimizer": "adamw",
        "learning_rate": 1e-4,
        "warmup_steps": 1000,
        "max_steps": 100000,
        "gradient_accumulation_steps": 4,
        "mixed_precision": True
    }
})

print(f"Training job created: {training_job.id}")

# Monitor distributed training
while training_job.status == "running":
    metrics = training_job.get_metrics()
    print(f"Step {metrics.step}: Loss={metrics.loss:.4f}")
    print(f"  GPU Utilization: {metrics.gpu_utilization:.1f}%")
    print(f"  Throughput: {metrics.samples_per_second:.1f} samples/sec")
    time.sleep(60)

Hyperparameter Optimization

Automated hyperparameter tuning with multiple optimization strategies:

python
# Bayesian hyperparameter optimization
hpo_job = client.cortexflow.create_hpo_job({
    "name": "model-optimization",
    "optimization_method": "bayesian",
    "objective": {
        "metric": "validation_accuracy",
        "direction": "maximize"
    },
    "search_space": {
        "learning_rate": {
            "type": "float",
            "min": 1e-5,
            "max": 1e-2,
            "scale": "log"
        },
        "batch_size": {
            "type": "categorical",
            "choices": [16, 32, 64, 128]
        },
        "hidden_layers": {
            "type": "int",
            "min": 2,
            "max": 10
        },
        "dropout_rate": {
            "type": "float",
            "min": 0.1,
            "max": 0.5
        },
        "optimizer": {
            "type": "categorical", 
            "choices": ["adam", "adamw", "sgd", "rmsprop"]
        }
    },
    "budget": {
        "max_trials": 50,
        "max_runtime": "12h",
        "early_stopping": {
            "min_trials": 10,
            "patience": 5
        }
    },
    "acquisition_function": "expected_improvement",
    "initial_points": 5
})

# Monitor optimization progress
best_trial = None
for trial in hpo_job.stream_trials():
    print(f"Trial {trial.number}: {trial.params}")
    print(f"  Result: {trial.metric_value:.4f}")
    
    if best_trial is None or trial.metric_value > best_trial.metric_value:
        best_trial = trial
        print(f"  New best! 🎉")

print(f"Best configuration: {best_trial.params}")
print(f"Best score: {best_trial.metric_value:.4f}")
python
# Grid search hyperparameter optimization
grid_search = client.cortexflow.create_hpo_job({
    "name": "comprehensive-grid-search",
    "optimization_method": "grid_search",
    "search_space": {
        "learning_rate": [0.001, 0.01, 0.1],
        "batch_size": [32, 64, 128],
        "hidden_size": [256, 512, 1024],
        "num_layers": [3, 4, 5]
    },
    "parallel_trials": 8,  # Run 8 trials in parallel
    "resource_per_trial": {
        "instance_type": "gpu.small",
        "max_runtime": "2h"
    }
})

# Get comprehensive results
results = grid_search.get_results()
results_df = results.to_dataframe()

# Analyze results
best_config = results_df.loc[results_df['metric'].idxmax()]
print(f"Best configuration:")
for param, value in best_config.items():
    if param != 'metric':
        print(f"  {param}: {value}")
print(f"Best metric: {best_config['metric']:.4f}")

# Visualize parameter importance
import matplotlib.pyplot as plt
client.cortexflow.plot_parameter_importance(grid_search.id)
plt.show()
python
# Random search with early stopping
random_search = client.cortexflow.create_hpo_job({
    "name": "random-search-exploration",
    "optimization_method": "random_search",
    "search_space": {
        "learning_rate": {
            "distribution": "log_uniform",
            "min": 1e-5,
            "max": 1e-1
        },
        "batch_size": {
            "distribution": "choice",
            "choices": [8, 16, 32, 64, 128, 256]
        },
        "weight_decay": {
            "distribution": "uniform",
            "min": 0.0,
            "max": 0.1
        }
    },
    "budget": {
        "max_trials": 100,
        "max_runtime": "8h"
    },
    "early_stopping": {
        "metric": "validation_loss",
        "min_delta": 0.001,
        "patience": 3,
        "warmup_trials": 10
    }
})

# Stream results in real-time
for update in random_search.stream_updates():
    if update.type == "trial_completed":
        trial = update.trial
        print(f"Trial {trial.number} completed")
        print(f"  Parameters: {trial.params}")
        print(f"  Score: {trial.metric_value:.4f}")
        print(f"  Runtime: {trial.runtime:.1f}s")
    elif update.type == "early_stopped":
        print(f"Trial {update.trial_number} stopped early")

Pipeline APIs

CortexFlow exposes powerful APIs for forward, backward, and prediction operations:

POST /cortexflow/forward

Execute forward pass through the neural network.

python
# Forward pass API
result = client.cortexflow.forward(
    model_id="training-model-123",
    inputs={
        "input_ids": [[101, 2023, 2003, 2143, 102]],  # Tokenized text
        "attention_mask": [[1, 1, 1, 1, 1]]
    },
    return_gradients=True,
    return_attention=True
)

print(f"Output shape: {result.outputs.shape}")
print(f"Loss: {result.loss:.4f}")
if result.gradients:
    print(f"Gradient norm: {result.gradient_norm:.6f}")
POST /cortexflow/backward

Execute backward pass and update model parameters.

python
# Backward pass API
update_result = client.cortexflow.backward(
    model_id="training-model-123",
    loss_value=2.341,
    gradients=computed_gradients,
    optimizer_config={
        "type": "adam",
        "learning_rate": 1e-4,
        "weight_decay": 0.01
    }
)

print(f"Parameters updated: {update_result.parameters_updated}")
print(f"Learning rate: {update_result.current_lr}")
print(f"Gradient norm: {update_result.gradient_norm:.6f}")

Model Performance Monitoring

Real-time monitoring of training metrics and model performance:

python
# Set up real-time monitoring
monitor = client.cortexflow.create_monitor({
    "training_job_id": "job_123",
    "metrics": [
        "loss", "accuracy", "learning_rate", "gradient_norm",
        "gpu_utilization", "memory_usage", "throughput"
    ],
    "alerts": [
        {
            "metric": "loss",
            "condition": "not_decreasing",
            "threshold": 10,  # 10 epochs without improvement
            "action": "email"
        },
        {
            "metric": "gpu_utilization", 
            "condition": "below",
            "threshold": 0.7,  # GPU utilization below 70%
            "action": "slack"
        }
    ]
})

# Get real-time metrics
metrics_stream = client.cortexflow.stream_metrics("job_123")
for metric_update in metrics_stream:
    print(f"Step {metric_update.step}:")
    print(f"  Loss: {metric_update.loss:.4f}")
    print(f"  Accuracy: {metric_update.accuracy:.2%}")
    print(f"  GPU: {metric_update.gpu_utilization:.1f}%")
    
    # Custom logic based on metrics
    if metric_update.loss > 10.0:
        print("  ⚠️  High loss detected!")
        client.cortexflow.pause_training("job_123")
        break

CortexLogs

CortexLogs provides comprehensive monitoring and observability for the entire AICortex platform with centralized logging, real-time analytics, alerting, and cost optimization insights.

Centralized Logging

Aggregate logs from all platform components in a unified interface:

System Logs

Infrastructure, auth, and platform events

Training Logs

ML training progress and metrics

Inference Logs

API requests and model predictions

Cost Analytics

Resource usage and billing insights

Log Filtering and Search

Advanced filtering capabilities to find exactly what you need:

python
# Query logs with advanced filtering
logs = client.cortexlogs.query({
    "time_range": {
        "start": "2024-01-20T00:00:00Z",
        "end": "2024-01-20T23:59:59Z"
    },
    "services": ["cortexflow", "model_hub", "instances"],
    "log_levels": ["ERROR", "WARN"],
    "search_query": "GPU memory",
    "filters": {
        "user_id": "user_123",
        "deployment_name": "production-classifier",
        "instance_type": "gpu.medium"
    },
    "limit": 1000,
    "sort": "timestamp_desc"
})

for log in logs:
    print(f"[{log.timestamp}] {log.service}.{log.level}: {log.message}")
    if log.metadata:
        print(f"  Metadata: {log.metadata}")

# Search specific error patterns
error_logs = client.cortexlogs.search(
    query="ERROR AND (timeout OR connection)",
    time_range="last_24h",
    group_by="service"
)

for service, errors in error_logs.items():
    print(f"{service}: {len(errors)} errors")
    
# Get log statistics
stats = client.cortexlogs.get_statistics(
    time_range="last_week",
    group_by=["service", "log_level"]
)

print("Log volume by service:")
for service, data in stats.items():
    print(f"  {service}: {data.total_logs} logs, {data.error_rate:.1%} error rate")

Real-Time Monitoring Dashboards

Customizable dashboards for monitoring system health and performance:

python
# Create custom monitoring dashboard
dashboard = client.cortexlogs.create_dashboard({
    "name": "Production AI Pipeline",
    "description": "Monitor production deployments and training jobs",
    "layout": "grid",
    "widgets": [
        {
            "type": "metric_chart",
            "title": "API Response Times",
            "position": {"x": 0, "y": 0, "width": 6, "height": 4},
            "config": {
                "metric": "api_response_time",
                "aggregation": "avg",
                "time_range": "1h",
                "group_by": "deployment_name"
            }
        },
        {
            "type": "log_count",
            "title": "Error Rate",
            "position": {"x": 6, "y": 0, "width": 6, "height": 4},
            "config": {
                "query": "level:ERROR",
                "time_range": "1h",
                "alert_threshold": 100
            }
        },
        {
            "type": "gauge",
            "title": "GPU Utilization", 
            "position": {"x": 0, "y": 4, "width": 4, "height": 3},
            "config": {
                "metric": "gpu_utilization",
                "aggregation": "avg",
                "min": 0,
                "max": 100,
                "thresholds": [
                    {"value": 70, "color": "green"},
                    {"value": 90, "color": "yellow"},
                    {"value": 95, "color": "red"}
                ]
            }
        },
        {
            "type": "table",
            "title": "Active Deployments",
            "position": {"x": 4, "y": 4, "width": 8, "height": 3},
            "config": {
                "query": "service:model_hub AND event:deployment_status",
                "columns": ["deployment_name", "status", "instances", "requests_per_minute"],
                "sort": "requests_per_minute_desc"
            }
        }
    ],
    "refresh_interval": "30s",
    "shared_with": ["team:ai-ops", "team:data-science"]
})

print(f"Dashboard created: {dashboard.url}")

# Update dashboard widget
client.cortexlogs.update_widget(dashboard.id, "widget_123", {
    "config": {
        "time_range": "24h",  # Extend time range
        "alert_threshold": 50  # Lower alert threshold
    }
})
python
# Available widget types and configurations

# 1. Time Series Chart
time_series_widget = {
    "type": "time_series",
    "config": {
        "metrics": [
            {
                "name": "cpu_utilization",
                "label": "CPU %",
                "color": "#FF6B35"
            },
            {
                "name": "memory_utilization", 
                "label": "Memory %",
                "color": "#36A2EB"
            }
        ],
        "time_range": "4h",
        "interval": "5m",
        "y_axis": {"min": 0, "max": 100}
    }
}

# 2. Heatmap
heatmap_widget = {
    "type": "heatmap",
    "config": {
        "metric": "request_latency",
        "x_axis": "time",
        "y_axis": "deployment_name",
        "aggregation": "p95",
        "color_scheme": "RdYlBu"
    }
}

# 3. Single Stat
single_stat_widget = {
    "type": "single_stat",
    "config": {
        "metric": "total_requests",
        "aggregation": "sum",
        "time_range": "1h",
        "format": "number",
        "sparkline": True,
        "thresholds": [
            {"value": 1000, "color": "green"},
            {"value": 500, "color": "yellow"},
            {"value": 100, "color": "red"}
        ]
    }
}

# 4. Log Stream
log_stream_widget = {
    "type": "log_stream",
    "config": {
        "query": "level:ERROR OR level:WARN",
        "max_lines": 100,
        "auto_refresh": True,
        "highlight_patterns": ["timeout", "error", "failed"]
    }
}

# Add widgets to dashboard
for widget_config in [time_series_widget, heatmap_widget, single_stat_widget, log_stream_widget]:
    client.cortexlogs.add_widget(dashboard.id, widget_config)

Alerting and Notifications

Proactive monitoring with intelligent alerts and multi-channel notifications:

python
# Configure comprehensive alerting
alert_rules = [
    {
        "name": "High Error Rate",
        "description": "Alert when error rate exceeds threshold",
        "query": "level:ERROR",
        "condition": {
            "type": "threshold",
            "operator": "greater_than",
            "value": 50,  # 50 errors
            "time_window": "5m",
            "evaluation_interval": "1m"
        },
        "notifications": [
            {
                "type": "email",
                "recipients": ["admin@company.com", "oncall@company.com"]
            },
            {
                "type": "slack",
                "channel": "#ai-alerts",
                "mention": "@channel"
            }
        ],
        "severity": "critical"
    },
    {
        "name": "GPU Utilization Low",
        "description": "Alert when GPU utilization is consistently low",
        "query": "metric:gpu_utilization",
        "condition": {
            "type": "threshold",
            "operator": "less_than",
            "value": 30,  # 30% utilization
            "time_window": "15m",
            "evaluation_interval": "5m"
        },
        "notifications": [
            {
                "type": "webhook",
                "url": "https://hooks.company.com/cost-optimization",
                "headers": {"Authorization": "Bearer token"}
            }
        ],
        "severity": "warning"
    },
    {
        "name": "Training Job Stalled",
        "description": "Alert when training loss stops decreasing",
        "query": "service:cortexflow AND event:training_metrics",
        "condition": {
            "type": "anomaly",
            "metric": "training_loss",
            "algorithm": "isolation_forest",
            "sensitivity": "medium",
            "time_window": "30m"
        },
        "notifications": [
            {
                "type": "pagerduty",
                "integration_key": "your_pagerduty_key",
                "severity": "error"
            }
        ],
        "severity": "high"
    }
]

# Create alert rules
for rule in alert_rules:
    alert = client.cortexlogs.create_alert_rule(rule)
    print(f"Alert rule created: {alert.id}")

# Test alert rule
test_result = client.cortexlogs.test_alert_rule(alert.id)
print(f"Alert test: {test_result.status}")
if test_result.would_trigger:
    print(f"Alert would trigger with current data")

# Get alert history
alert_history = client.cortexlogs.get_alert_history(
    time_range="last_week",
    severity=["critical", "high"]
)

for alert_event in alert_history:
    print(f"[{alert_event.timestamp}] {alert_event.rule_name}")
    print(f"  Status: {alert_event.status}")
    print(f"  Duration: {alert_event.duration}")

Cost Analytics and Optimization

Detailed cost tracking with optimization recommendations:

python
# Get detailed cost analytics
cost_analysis = client.cortexlogs.get_cost_analytics({
    "time_range": "last_month",
    "group_by": ["service", "instance_type", "user"],
    "include_recommendations": True
})

print("Cost breakdown by service:")
for service, cost_data in cost_analysis.by_service.items():
    print(f"  {service}: ${cost_data.total:.2f}")
    print(f"    GPU hours: {cost_data.gpu_hours:.1f}")
    print(f"    Storage: ${cost_data.storage_cost:.2f}")
    print(f"    API calls: {cost_data.api_calls:,}")

print("\nTop cost drivers:")
for driver in cost_analysis.top_drivers:
    print(f"  {driver.resource}: ${driver.cost:.2f} ({driver.percentage:.1f}%)")

print("\nOptimization recommendations:")
for rec in cost_analysis.recommendations:
    print(f"  💡 {rec.title}")
    print(f"     {rec.description}")
    print(f"     Potential savings: ${rec.estimated_savings:.2f}/month")
    
    if rec.type == "right_sizing":
        print(f"     Suggested instance: {rec.suggested_instance_type}")
    elif rec.type == "auto_scaling":
        print(f"     Suggested config: {rec.scaling_config}")

# Set up cost alerts
cost_alert = client.cortexlogs.create_cost_alert({
    "name": "Monthly Budget Alert",
    "budget": 5000,  # $5000/month
    "alert_thresholds": [50, 80, 90, 100],  # Alert at 50%, 80%, 90%, 100%
    "scope": {
        "services": ["cortexflow", "model_hub"],
        "users": ["team:data-science"]
    },
    "notifications": [
        {"type": "email", "recipients": ["finance@company.com"]},
        {"type": "slack", "channel": "#budget-alerts"}
    ]
})

# Get real-time cost tracking
current_spend = client.cortexlogs.get_current_spend()
print(f"Current month spend: ${current_spend.total:.2f}")
print(f"Projected month-end: ${current_spend.projected:.2f}")
print(f"Budget utilization: {current_spend.budget_utilization:.1%}")

Model Deployment Guide

Learn how to deploy and manage AI models on the AICortex platform with advanced configuration options, scaling strategies, and best practices.

Deployment Types

AICortex supports three types of model deployments:

🚀 Quick Deploy

Deploy pre-trained models from Model Hub with minimal configuration.

  • • One-click deployment
  • • Default scaling policies
  • • Standard instance types
  • • Automatic health checks

⚙️ Custom Deploy

Deploy with custom configurations, scaling policies, and environment settings.

  • • Custom instance types
  • • Advanced scaling rules
  • • Environment variables
  • • Resource limits

🔧 Custom Model

Deploy your own models with custom inference code and dependencies.

  • • Custom Docker images
  • • Inference scripts
  • • Dependency management
  • • Model versioning

Instance Types

Choose the right compute instance for your model's requirements:

Instance Type CPU Memory GPU Best For Price/Hour
cpu.small 2 vCPU 4 GB - Simple text models $0.05
cpu.medium 4 vCPU 8 GB - NLP, small models $0.10
gpu.small 4 vCPU 16 GB T4 (16GB) Image classification $0.50
gpu.medium 8 vCPU 32 GB V100 (32GB) Large language models $1.20
gpu.large 16 vCPU 64 GB A100 (80GB) Very large models $3.00

Auto-Scaling Configuration

Configure automatic scaling to handle varying traffic loads efficiently:

json
{
  "auto_scaling": {
    "min_instances": 1,
    "max_instances": 20,
    "target_utilization": 70,
    "scale_up_cooldown": "2m",
    "scale_down_cooldown": "5m",
    "metrics": {
      "cpu_utilization": {
        "target": 70,
        "weight": 0.3
      },
      "memory_utilization": {
        "target": 80,
        "weight": 0.2
      },
      "request_rate": {
        "target": 100,
        "weight": 0.5
      }
    }
  }
}

Scaling Metrics

  • CPU Utilization: Average CPU usage across all instances
  • Memory Utilization: Average memory usage across all instances
  • Request Rate: Number of requests per second per instance
  • Queue Depth: Number of pending requests in the queue
  • Response Time: Average response time for requests

Health Checks and Monitoring

AICortex automatically monitors your deployments and provides health checks:

json
{
  "health_check": {
    "enabled": true,
    "endpoint": "/health",
    "interval": "30s",
    "timeout": "10s",
    "unhealthy_threshold": 3,
    "healthy_threshold": 2
  },
  "monitoring": {
    "metrics_enabled": true,
    "log_level": "INFO",
    "alerts": {
      "high_error_rate": {
        "threshold": 5,
        "window": "5m"
      },
      "high_latency": {
        "threshold": "2s",
        "window": "5m"
      }
    }
  }
}

Deployment Strategies

Blue-Green Deployment

Deploy new versions with zero downtime using blue-green deployment:

python
# Deploy new version (green)
new_deployment = client.models.deploy(
    model_id="my-model:v2.0",
    name="my-model-green",
    config={"instance_type": "gpu.medium"}
)

# Wait for deployment to be ready
new_deployment.wait_until_ready()

# Test the new deployment
test_result = client.models.predict(
    deployment_name="my-model-green",
    inputs=test_data
)

# If tests pass, switch traffic
client.deployments.switch_traffic(
    from_deployment="my-model-blue",
    to_deployment="my-model-green",
    percentage=100
)

# Clean up old deployment
client.deployments.delete("my-model-blue")

Canary Deployment

Gradually roll out new versions to a subset of traffic:

python
# Deploy canary version
canary_deployment = client.models.deploy(
    model_id="my-model:v2.0",
    name="my-model-canary",
    config={"instance_type": "gpu.medium"}
)

# Route 10% of traffic to canary
client.deployments.set_traffic_split({
    "my-model-production": 90,
    "my-model-canary": 10
})

# Monitor metrics and gradually increase
import time
time.sleep(300)  # Wait 5 minutes

# If metrics look good, increase to 50%
client.deployments.set_traffic_split({
    "my-model-production": 50,
    "my-model-canary": 50
})

# Eventually promote canary to production
client.deployments.promote_canary("my-model-canary")

Best Practices

💡 Pro Tips:
  • • Use smaller instance types for testing and larger ones for production
  • • Set appropriate auto-scaling limits to control costs
  • • Enable health checks and monitoring for all deployments
  • • Use blue-green or canary deployments for critical models
  • • Test your models thoroughly before deploying to production

Data Integration Guide

Learn how to seamlessly integrate your data sources with AICortex, from simple file uploads to complex streaming pipelines and real-time data processing.

Data Source Integration Patterns

Batch Data Processing

For training data and periodic model updates:

python
# S3 batch processing with automatic triggering
s3_config = {
    "bucket": "ml-training-data",
    "prefix": "datasets/images/",
    "trigger": {
        "type": "s3_event",  # Trigger on new files
        "events": ["s3:ObjectCreated:*"]
    },
    "processing": {
        "batch_size": 1000,
        "format": "pytorch_dataset",
        "transformations": [
            {"type": "resize", "params": {"size": [224, 224]}},
            {"type": "normalize", "params": {"mean": [0.485, 0.456, 0.406]}},
            {"type": "augment", "params": {"rotation": 15, "flip": True}}
        ]
    }
}

# Create data pipeline
pipeline = client.data_streams.create_pipeline({
    "name": "image-training-pipeline",
    "source": {"type": "s3", "config": s3_config},
    "destination": {"type": "cortexflow", "target": "training_job_123"},
    "schedule": "0 2 * * *",  # Daily at 2 AM
    "validation": {
        "schema": "image_dataset_schema",
        "quality_checks": ["format", "size", "corruption"]
    }
})

# Monitor pipeline execution
status = client.data_streams.get_pipeline_status(pipeline.id)
print(f"Pipeline status: {status.state}")
print(f"Last run: {status.last_execution}")
print(f"Files processed: {status.files_processed}")

Real-time Streaming

For live inference and continuous learning:

python
# Kafka streaming for real-time inference
kafka_config = {
    "bootstrap_servers": ["kafka1:9092", "kafka2:9092"],
    "topics": ["user_events", "sensor_data"],
    "consumer_group": "aicortex_inference",
    "processing": {
        "batch_size": 100,
        "max_latency": "1s",
        "format": "json",
        "schema_registry": "http://schema-registry:8081"
    },
    "security": {
        "protocol": "SASL_SSL",
        "mechanism": "PLAIN",
        "username": "kafka_user",
        "password": "kafka_password"
    }
}

# Create streaming pipeline
stream = client.data_streams.create_stream({
    "name": "real-time-inference-stream",
    "source": {"type": "kafka", "config": kafka_config},
    "processors": [
        {
            "type": "filter",
            "config": {"condition": "event_type == 'prediction_request'"}
        },
        {
            "type": "enrich",
            "config": {"user_lookup": "user_service_api"}
        },
        {
            "type": "predict",
            "config": {"deployment": "real-time-classifier"}
        }
    ],
    "output": {
        "type": "kafka",
        "topic": "prediction_results",
        "format": "avro"
    }
})

# Start stream processing
client.data_streams.start_stream(stream.id)
print(f"Stream {stream.name} started")

# Monitor stream health
metrics = client.data_streams.get_stream_metrics(stream.id)
print(f"Messages/sec: {metrics.throughput}")
print(f"Latency p99: {metrics.latency_p99}ms")
print(f"Error rate: {metrics.error_rate:.2%}")

Database Integrations

Connect to various databases for training data and feature stores:

python
# PostgreSQL integration for training data
postgres_config = {
    "host": "postgres.company.com",
    "port": 5432,
    "database": "ml_data",
    "username": "ml_user",
    "password": "secure_password",
    "ssl_mode": "require",
    "connection_pool": {
        "min_connections": 5,
        "max_connections": 20
    }
}

# Create database connection
db_source = client.data_streams.create_source({
    "name": "postgres-training-data",
    "type": "postgresql",
    "config": postgres_config
})

# Define data extraction query
extraction_config = {
    "query": """
        SELECT 
            customer_id,
            feature_vector,
            label,
            created_at
        FROM customer_features 
        WHERE created_at >= %s 
        AND label IS NOT NULL
        ORDER BY created_at DESC
    """,
    "parameters": ["2024-01-01"],
    "batch_size": 10000,
    "incremental": {
        "column": "created_at",
        "strategy": "watermark"
    }
}

# Extract and prepare training data
training_data = client.data_streams.extract({
    "source": db_source.id,
    "config": extraction_config,
    "output_format": "parquet",
    "destination": "s3://training-bucket/customer-features/"
})

print(f"Extracted {training_data.row_count} rows")
print(f"Output files: {training_data.output_files}")

# Schedule regular data extraction
client.data_streams.schedule_extraction({
    "source": db_source.id,
    "config": extraction_config,
    "schedule": "0 1 * * *",  # Daily at 1 AM
    "notification": {
        "on_success": ["data-team@company.com"],
        "on_failure": ["oncall@company.com"]
    }
})
python
# MongoDB integration for document data
mongo_config = {
    "connection_string": "mongodb+srv://user:pass@cluster.mongodb.net/",
    "database": "user_content",
    "collection": "documents",
    "authentication": {
        "mechanism": "SCRAM-SHA-256",
        "source": "admin"
    },
    "options": {
        "read_preference": "secondaryPreferred",
        "max_pool_size": 50
    }
}

# Create MongoDB source
mongo_source = client.data_streams.create_source({
    "name": "document-classification-data",
    "type": "mongodb",
    "config": mongo_config
})

# Extract documents for text classification
document_extraction = {
    "filter": {
        "status": "approved",
        "language": "en",
        "created_at": {"$gte": "2024-01-01"}
    },
    "projection": {
        "title": 1,
        "content": 1,
        "category": 1,
        "tags": 1,
        "_id": 0
    },
    "transformations": [
        {
            "type": "text_preprocessing",
            "config": {
                "clean_html": True,
                "normalize_whitespace": True,
                "min_length": 100
            }
        },
        {
            "type": "feature_extraction",
            "config": {
                "method": "tfidf",
                "max_features": 10000,
                "ngram_range": [1, 2]
            }
        }
    ]
}

# Process documents in batches
document_data = client.data_streams.extract({
    "source": mongo_source.id,
    "config": document_extraction,
    "batch_size": 5000,
    "output_format": "jsonlines"
})

print(f"Processed {document_data.document_count} documents")

# Set up change stream for real-time updates
change_stream = client.data_streams.create_change_stream({
    "source": mongo_source.id,
    "watch_options": {
        "full_document": "updateLookup",
        "filter": {"operationType": {"$in": ["insert", "update"]}}
    },
    "processor": {
        "type": "incremental_training",
        "model": "document-classifier",
        "batch_size": 100
    }
})

client.data_streams.start_change_stream(change_stream.id)
print("Change stream started for real-time updates")
python
# Snowflake integration for analytics data
snowflake_config = {
    "account": "your_account.snowflakecomputing.com",
    "user": "ML_USER",
    "password": "secure_password",
    "warehouse": "ML_WAREHOUSE",
    "database": "ANALYTICS",
    "schema": "ML_FEATURES",
    "role": "ML_ROLE",
    "authentication": {
        "type": "key_pair",  # or "password", "oauth"
        "private_key_path": "/path/to/private_key.p8"
    }
}

# Create Snowflake connection
snowflake_source = client.data_streams.create_source({
    "name": "snowflake-analytics",
    "type": "snowflake", 
    "config": snowflake_config
})

# Large-scale feature extraction
feature_query = """
WITH user_features AS (
    SELECT 
        user_id,
        COUNT(DISTINCT session_id) as session_count,
        AVG(session_duration_minutes) as avg_session_duration,
        SUM(page_views) as total_page_views,
        COUNT(DISTINCT DATE(event_timestamp)) as active_days,
        ARRAY_AGG(DISTINCT category) as categories_viewed
    FROM user_events 
    WHERE event_timestamp >= DATEADD(day, -30, CURRENT_DATE)
    GROUP BY user_id
),
conversion_features AS (
    SELECT 
        user_id,
        COUNT(*) as conversion_count,
        AVG(conversion_value) as avg_conversion_value,
        MAX(conversion_timestamp) as last_conversion
    FROM conversions
    WHERE conversion_timestamp >= DATEADD(day, -30, CURRENT_DATE)
    GROUP BY user_id
)
SELECT 
    u.user_id,
    u.session_count,
    u.avg_session_duration,
    u.total_page_views,
    u.active_days,
    u.categories_viewed,
    COALESCE(c.conversion_count, 0) as conversion_count,
    COALESCE(c.avg_conversion_value, 0) as avg_conversion_value,
    CASE WHEN c.last_conversion IS NOT NULL THEN 1 ELSE 0 END as has_converted
FROM user_features u
LEFT JOIN conversion_features c ON u.user_id = c.user_id
WHERE u.session_count >= 5  -- Active users only
"""

# Execute large query with optimization
feature_data = client.data_streams.execute_query({
    "source": snowflake_source.id,
    "query": feature_query,
    "optimization": {
        "warehouse_size": "LARGE",
        "auto_suspend": 300,  # seconds
        "multi_cluster": True
    },
    "output": {
        "format": "parquet",
        "compression": "snappy",
        "partition_by": ["conversion_count"],
        "destination": "s3://ml-features/user-features/"
    }
})

print(f"Feature extraction completed: {feature_data.row_count} users")
print(f"Query execution time: {feature_data.execution_time}s")
print(f"Data size: {feature_data.size_mb}MB")

# Create materialized view for real-time features
materialized_view = """
CREATE OR REPLACE STREAM user_feature_stream ON TABLE user_events
SHOW_INITIAL_ROWS = FALSE;

CREATE OR REPLACE TASK refresh_user_features
    WAREHOUSE = ML_WAREHOUSE
    SCHEDULE = 'USING CRON 0 */4 * * * UTC'  -- Every 4 hours
AS
    MERGE INTO user_features_real_time AS target
    USING (
        SELECT 
            user_id,
            COUNT(*) as new_events,
            MAX(event_timestamp) as last_activity
        FROM user_feature_stream
        GROUP BY user_id
    ) AS source
    ON target.user_id = source.user_id
    WHEN MATCHED THEN UPDATE SET
        event_count = target.event_count + source.new_events,
        last_activity = source.last_activity,
        updated_at = CURRENT_TIMESTAMP()
    WHEN NOT MATCHED THEN INSERT (
        user_id, event_count, last_activity, updated_at
    ) VALUES (
        source.user_id, source.new_events, source.last_activity, CURRENT_TIMESTAMP()
    );
"""

client.data_streams.execute_ddl({
    "source": snowflake_source.id,
    "statements": materialized_view
})

print("Real-time feature pipeline created in Snowflake")

Data Quality and Validation

Ensure data quality with automated validation and monitoring:

python
# Comprehensive data quality framework
data_quality_config = {
    "schema_validation": {
        "enforce_schema": True,
        "schema_file": "data_schema.json",
        "allow_missing_columns": False,
        "allow_extra_columns": True
    },
    "quality_checks": [
        {
            "type": "completeness",
            "columns": ["user_id", "timestamp", "event_type"],
            "threshold": 0.95  # 95% completeness required
        },
        {
            "type": "uniqueness",
            "columns": ["user_id", "timestamp"],
            "threshold": 1.0   # Must be unique
        },
        {
            "type": "range",
            "column": "age",
            "min": 13,
            "max": 120
        },
        {
            "type": "pattern",
            "column": "email",
            "pattern": r"^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$"
        },
        {
            "type": "distribution",
            "column": "revenue",
            "check": "no_outliers",
            "method": "iqr",
            "threshold": 3.0
        }
    ],
    "anomaly_detection": {
        "enabled": True,
        "methods": ["isolation_forest", "local_outlier_factor"],
        "contamination": 0.1,
        "features": ["numerical_columns"]
    },
    "drift_detection": {
        "enabled": True,
        "reference_period": "last_week",
        "methods": ["ks_test", "chi2_test"],
        "threshold": 0.05
    }
}

# Apply quality checks to data pipeline
quality_pipeline = client.data_streams.create_quality_pipeline({
    "name": "user-data-quality",
    "source": "user-events-stream",
    "config": data_quality_config,
    "actions": {
        "on_failure": ["quarantine", "alert"],
        "on_anomaly": ["flag", "notify"],
        "on_drift": ["retrain_trigger", "alert"]
    },
    "notifications": {
        "email": ["data-team@company.com"],
        "slack": "#data-quality-alerts",
        "webhook": "https://monitoring.company.com/webhooks/data-quality"
    }
})

# Monitor data quality metrics
quality_report = client.data_streams.get_quality_report(
    pipeline_id=quality_pipeline.id,
    time_range="last_24h"
)

print("Data Quality Report:")
print(f"Overall score: {quality_report.overall_score:.2%}")
print(f"Records processed: {quality_report.records_processed:,}")
print(f"Records failed: {quality_report.records_failed:,}")
print(f"Quality issues detected: {len(quality_report.issues)}")

for issue in quality_report.issues:
    print(f"  - {issue.type}: {issue.description}")
    print(f"    Affected records: {issue.affected_count}")
    print(f"    Severity: {issue.severity}")

# Set up automated remediation
remediation_rules = [
    {
        "condition": "completeness < 0.9",
        "action": "backfill_missing_data",
        "config": {"method": "forward_fill", "max_gap": 5}
    },
    {
        "condition": "drift_detected == True",
        "action": "trigger_retraining",
        "config": {"model": "user-classifier", "priority": "high"}
    },
    {
        "condition": "anomaly_rate > 0.05",
        "action": "quarantine_data",
        "config": {"quarantine_bucket": "s3://quarantine-data/"}
    }
]

client.data_streams.configure_auto_remediation(
    pipeline_id=quality_pipeline.id,
    rules=remediation_rules
)

print("Auto-remediation rules configured")

Monitoring & Logging Guide

Comprehensive monitoring strategies for AI models, infrastructure, and business metrics with proactive alerting and automated remediation.

Model Performance Monitoring

Track model accuracy, drift, and performance in production:

python
# Set up comprehensive model monitoring
model_monitor = client.cortexlogs.create_model_monitor({
    "deployment_name": "production-classifier",
    "monitoring_config": {
        "performance_tracking": {
            "enabled": True,
            "metrics": ["accuracy", "precision", "recall", "f1_score"],
            "ground_truth_source": "s3://labels/production-labels/",
            "evaluation_frequency": "daily",
            "min_samples": 1000
        },
        "drift_detection": {
            "enabled": True,
            "input_drift": {
                "method": "ks_test",
                "threshold": 0.05,
                "features": "all"
            },
            "output_drift": {
                "method": "psi",  # Population Stability Index
                "threshold": 0.1,
                "bins": 10
            },
            "concept_drift": {
                "method": "ddm",  # Drift Detection Method
                "warning_threshold": 2.0,
                "drift_threshold": 3.0
            }
        },
        "bias_monitoring": {
            "enabled": True,
            "protected_attributes": ["gender", "age_group", "ethnicity"],
            "fairness_metrics": ["demographic_parity", "equalized_odds"],
            "threshold": 0.1
        },
        "explainability": {
            "enabled": True,
            "method": "shap",
            "sample_rate": 0.1,  # Explain 10% of predictions
            "features_to_track": ["top_10"]
        }
    },
    "alerting": {
        "accuracy_drop": {
            "threshold": 0.05,  # 5% drop
            "severity": "critical"
        },
        "drift_detected": {
            "severity": "warning"
        },
        "bias_detected": {
            "severity": "high"
        }
    }
})

# Track model performance over time
performance_metrics = client.cortexlogs.get_model_performance(
    deployment_name="production-classifier",
    time_range="last_30_days",
    group_by="day"
)

print("Model Performance Trend:")
for day_metric in performance_metrics:
    print(f"Date: {day_metric.date}")
    print(f"  Accuracy: {day_metric.accuracy:.3f}")
    print(f"  Drift Score: {day_metric.drift_score:.3f}")
    print(f"  Prediction Volume: {day_metric.prediction_count:,}")

# Generate model performance report
report = client.cortexlogs.generate_model_report({
    "deployment_name": "production-classifier",
    "time_range": "last_week",
    "include_sections": [
        "performance_summary",
        "drift_analysis", 
        "bias_assessment",
        "feature_importance",
        "error_analysis"
    ],
    "format": "pdf",
    "recipients": ["ml-team@company.com"]
})

print(f"Model report generated: {report.download_url}")

Infrastructure Monitoring

Monitor GPU utilization, costs, and system health:

python
# GPU utilization monitoring
gpu_monitor = client.cortexlogs.create_infrastructure_monitor({
    "name": "gpu-utilization-monitor",
    "type": "gpu_metrics",
    "config": {
        "instances": "all",  # or specific instance IDs
        "metrics": [
            "gpu_utilization",
            "gpu_memory_utilization", 
            "gpu_temperature",
            "power_consumption",
            "compute_utilization"
        ],
        "collection_interval": "30s",
        "aggregation_window": "5m"
    },
    "alerts": [
        {
            "name": "Low GPU Utilization",
            "condition": "gpu_utilization < 30",
            "duration": "10m",
            "severity": "warning",
            "action": "cost_optimization_suggestion"
        },
        {
            "name": "GPU Memory High",
            "condition": "gpu_memory_utilization > 90",
            "duration": "2m", 
            "severity": "critical",
            "action": "scale_up_suggestion"
        },
        {
            "name": "GPU Overheating",
            "condition": "gpu_temperature > 85",
            "duration": "1m",
            "severity": "critical",
            "action": "immediate_alert"
        }
    ]
})

# Get real-time GPU metrics
gpu_metrics = client.cortexlogs.get_gpu_metrics(
    time_range="last_hour",
    granularity="1m"
)

for instance_id, metrics in gpu_metrics.items():
    print(f"Instance {instance_id}:")
    print(f"  GPU Utilization: {metrics.avg_gpu_utilization:.1f}%")
    print(f"  Memory Usage: {metrics.avg_memory_utilization:.1f}%")
    print(f"  Temperature: {metrics.avg_temperature:.1f}°C")
    print(f"  Power: {metrics.avg_power_consumption:.1f}W")

# Create GPU utilization dashboard
dashboard = client.cortexlogs.create_dashboard({
    "name": "GPU Infrastructure Dashboard",
    "widgets": [
        {
            "type": "time_series",
            "title": "GPU Utilization",
            "metrics": ["gpu_utilization"],
            "group_by": "instance_id"
        },
        {
            "type": "heatmap",
            "title": "GPU Memory Usage",
            "metric": "gpu_memory_utilization",
            "x_axis": "time",
            "y_axis": "instance_id"
        },
        {
            "type": "gauge",
            "title": "Average GPU Temperature",
            "metric": "gpu_temperature",
            "aggregation": "avg",
            "thresholds": [60, 75, 85]
        },
        {
            "type": "table",
            "title": "Instance Status",
            "columns": ["instance_id", "status", "utilization", "cost_per_hour"]
        }
    ]
})

print(f"GPU dashboard created: {dashboard.url}")
python
# Cost monitoring and optimization
cost_monitor = client.cortexlogs.create_cost_monitor({
    "name": "ai-infrastructure-costs",
    "budget": {
        "monthly_limit": 10000,  # $10,000/month
        "alert_thresholds": [50, 75, 90, 100],  # Percentage of budget
        "auto_actions": {
            "at_90_percent": ["scale_down_dev_instances"],
            "at_100_percent": ["pause_non_critical_deployments"]
        }
    },
    "cost_tracking": {
        "granularity": "hourly",
        "dimensions": ["service", "instance_type", "deployment", "user"],
        "include_predictions": True  # Forecast spending
    },
    "optimization": {
        "recommendations": True,
        "auto_rightsizing": {
            "enabled": True,
            "min_utilization": 60,  # Suggest smaller instances if < 60%
            "evaluation_period": "7d"
        },
        "spot_instance_suggestions": True,
        "reserved_instance_analysis": True
    }
})

# Get detailed cost breakdown
cost_analysis = client.cortexlogs.get_cost_analysis({
    "time_range": "current_month",
    "group_by": ["service", "deployment"],
    "include_forecast": True
})

print("Cost Analysis:")
print(f"Current month spend: ${cost_analysis.current_spend:.2f}")
print(f"Forecasted month-end: ${cost_analysis.forecasted_spend:.2f}")
print(f"Budget utilization: {cost_analysis.budget_utilization:.1%}")

print("\nTop cost drivers:")
for driver in cost_analysis.top_cost_drivers[:5]:
    print(f"  {driver.resource}: ${driver.cost:.2f} ({driver.percentage:.1%})")

print("\nCost optimization recommendations:")
for rec in cost_analysis.recommendations:
    print(f"  💡 {rec.title}")
    print(f"     Potential savings: ${rec.monthly_savings:.2f}/month")
    print(f"     Action: {rec.recommended_action}")

# Set up automated cost optimization
cost_optimizer = client.cortexlogs.create_cost_optimizer({
    "rules": [
        {
            "name": "Scale down idle dev instances",
            "condition": "utilization < 20% AND environment = 'dev'",
            "duration": "1h",
            "action": "scale_down",
            "savings_estimate": "$500/month"
        },
        {
            "name": "Use spot instances for training",
            "condition": "job_type = 'training' AND duration > 30min",
            "action": "suggest_spot_instance",
            "savings_estimate": "70%"
        },
        {
            "name": "Auto-shutdown weekend instances",
            "condition": "weekend AND non_production",
            "action": "schedule_shutdown",
            "schedule": "Fri 18:00 - Mon 06:00"
        }
    ],
    "approval_required": True,
    "notification_channel": "#cost-optimization"
})

print("Cost optimization rules configured")
python
# Comprehensive health monitoring
health_monitor = client.cortexlogs.create_health_monitor({
    "name": "platform-health-monitor",
    "components": {
        "deployments": {
            "health_checks": [
                {"type": "http", "endpoint": "/health", "timeout": "5s"},
                {"type": "prediction", "sample_input": "test_data", "timeout": "10s"}
            ],
            "sla_targets": {
                "availability": 99.9,
                "response_time": "2s",
                "error_rate": 0.1
            }
        },
        "data_pipelines": {
            "health_checks": [
                {"type": "data_freshness", "max_age": "1h"},
                {"type": "throughput", "min_rate": "1000/min"},
                {"type": "quality_score", "min_score": 0.95}
            ]
        },
        "training_jobs": {
            "health_checks": [
                {"type": "progress", "min_improvement": "1%/hour"},
                {"type": "resource_usage", "max_idle_time": "10min"},
                {"type": "convergence", "plateau_threshold": 100}
            ]
        }
    },
    "synthetic_monitoring": {
        "enabled": True,
        "tests": [
            {
                "name": "End-to-end inference test",
                "frequency": "5m",
                "steps": [
                    {"action": "upload_image", "input": "test_images/sample.jpg"},
                    {"action": "predict", "deployment": "production-classifier"},
                    {"action": "verify_response", "expected_format": "classification"}
                ],
                "alerts": {
                    "failure": "immediate",
                    "latency_high": "warning"
                }
            },
            {
                "name": "Training pipeline test",
                "frequency": "1h",
                "steps": [
                    {"action": "submit_training_job", "config": "test_config"},
                    {"action": "wait_for_start", "timeout": "5m"},
                    {"action": "check_metrics", "duration": "10m"},
                    {"action": "cancel_job"}
                ]
            }
        ]
    }
})

# Get system health overview
health_status = client.cortexlogs.get_health_overview()

print("Platform Health Status:")
print(f"Overall status: {health_status.overall_status}")
print(f"Uptime: {health_status.uptime:.2%}")

print("\nComponent Status:")
for component, status in health_status.components.items():
    status_icon = "✅" if status.healthy else "❌"
    print(f"  {status_icon} {component}: {status.status}")
    if not status.healthy:
        print(f"     Issues: {', '.join(status.issues)}")

print("\nSLA Performance:")
for sla, performance in health_status.sla_performance.items():
    print(f"  {sla}: {performance.current:.2%} (Target: {performance.target:.2%})")

# Create incident when health issues detected
if not health_status.overall_healthy:
    incident = client.cortexlogs.create_incident({
        "title": "Platform Health Degradation",
        "description": "Automated health check detected issues",
        "severity": "high" if health_status.critical_issues else "medium",
        "affected_components": [c for c, s in health_status.components.items() if not s.healthy],
        "assign_to": "oncall",
        "auto_escalate": True
    })
    
    print(f"Incident created: {incident.id}")

# Health check automation
health_automation = client.cortexlogs.create_health_automation({
    "rules": [
        {
            "condition": "deployment_health = false",
            "actions": [
                "restart_unhealthy_instances",
                "scale_up_healthy_instances",
                "notify_oncall"
            ]
        },
        {
            "condition": "data_pipeline_stalled = true",
            "actions": [
                "restart_pipeline",
                "check_source_connectivity",
                "alert_data_team"
            ]
        },
        {
            "condition": "training_job_stuck = true",
            "actions": [
                "save_checkpoint",
                "restart_with_smaller_batch",
                "notify_ml_team"
            ]
        }
    ],
    "approval_required": False,  # Auto-remediation enabled
    "max_actions_per_hour": 10
})

print("Health automation configured")

Business Metrics Monitoring

Track business impact and ROI of AI deployments:

python
# Business impact monitoring
business_monitor = client.cortexlogs.create_business_monitor({
    "name": "ai-business-impact",
    "metrics": {
        "revenue_impact": {
            "source": "analytics_db",
            "query": """
                SELECT 
                    DATE(timestamp) as date,
                    SUM(CASE WHEN ai_prediction_used = true THEN revenue ELSE 0 END) as ai_assisted_revenue,
                    SUM(revenue) as total_revenue
                FROM sales_transactions 
                WHERE timestamp >= CURRENT_DATE - INTERVAL '30 days'
                GROUP BY DATE(timestamp)
            """,
            "target": "increase_by_15_percent"
        },
        "customer_satisfaction": {
            "source": "support_system",
            "metric": "csat_score",
            "filter": "ai_interaction = true",
            "target": "> 4.5"
        },
        "operational_efficiency": {
            "metrics": [
                {"name": "processing_time", "target": "< 30s"},
                {"name": "manual_review_rate", "target": "< 10%"},
                {"name": "automation_rate", "target": "> 80%"}
            ]
        },
        "model_adoption": {
            "metrics": [
                {"name": "daily_active_users", "target": "growth > 5%"},
                {"name": "api_usage", "target": "growth > 10%"},
                {"name": "feature_adoption", "target": "> 60%"}
            ]
        }
    },
    "reporting": {
        "frequency": "weekly",
        "recipients": ["executives@company.com", "product@company.com"],
        "format": "executive_summary",
        "include_roi_analysis": True
    }
})

# Generate business impact report
business_report = client.cortexlogs.generate_business_report({
    "time_range": "last_quarter",
    "include_sections": [
        "executive_summary",
        "revenue_impact",
        "cost_savings",
        "efficiency_gains",
        "user_adoption",
        "roi_analysis",
        "recommendations"
    ],
    "benchmark_against": "previous_quarter"
})

print("Business Impact Summary:")
print(f"Revenue Impact: ${business_report.revenue_impact:.2f}")
print(f"Cost Savings: ${business_report.cost_savings:.2f}")
print(f"ROI: {business_report.roi:.1%}")
print(f"Efficiency Improvement: {business_report.efficiency_gain:.1%}")

# A/B testing for model impact
ab_test = client.cortexlogs.create_ab_test({
    "name": "recommendation_model_v2",
    "hypothesis": "New model improves click-through rate by 15%",
    "variants": {
        "control": {
            "model": "recommendation_v1",
            "traffic_percentage": 50
        },
        "treatment": {
            "model": "recommendation_v2", 
            "traffic_percentage": 50
        }
    },
    "success_metrics": [
        {"name": "click_through_rate", "target": "increase"},
        {"name": "conversion_rate", "target": "increase"},
        {"name": "revenue_per_user", "target": "increase"}
    ],
    "duration": "14_days",
    "min_sample_size": 10000,
    "statistical_power": 0.8
})

# Monitor A/B test results
ab_results = client.cortexlogs.get_ab_test_results(ab_test.id)
if ab_results.is_significant:
    print(f"A/B Test Results (Significant):")
    print(f"  Control CTR: {ab_results.control.click_through_rate:.2%}")
    print(f"  Treatment CTR: {ab_results.treatment.click_through_rate:.2%}")
    print(f"  Improvement: {ab_results.improvement:.1%}")
    print(f"  Confidence: {ab_results.confidence:.1%}")
    
    if ab_results.recommendation == "deploy_treatment":
        print("✅ Recommendation: Deploy new model to production")
else:
    print(f"A/B Test ongoing... Current sample size: {ab_results.sample_size}")

Best Practices

Industry-proven best practices for developing, deploying, and maintaining AI systems on the AICortex platform.

Model Development Best Practices

🧪 Experimentation & Development

  • Version Control Everything: Use git for code, DVC for data, and MLflow for experiments
  • Reproducible Experiments: Set random seeds, document dependencies, use containerization
  • Start Simple: Begin with baseline models before exploring complex architectures
  • Data-Centric AI: Focus on data quality before model complexity

🚀 Production Deployment

  • Gradual Rollouts: Use canary deployments and feature flags
  • Comprehensive Testing: Unit tests, integration tests, and shadow testing
  • Monitoring First: Set up monitoring before deployment
  • Rollback Strategy: Always have a plan to revert quickly

Model Training Best Practices

python
# Best practices for model training
class ModelTrainingBestPractices:
    
    def __init__(self, client):
        self.client = client
    
    def setup_experiment_tracking(self, experiment_name):
        """Set up comprehensive experiment tracking"""
        experiment = self.client.cortexflow.create_experiment({
            "name": experiment_name,
            "description": "Production model training with best practices",
            "tags": ["production", "v2.0", "baseline"],
            "metadata": {
                "dataset_version": "v1.2.3",
                "feature_set": "core_features_v1",
                "objective": "improve_accuracy_by_5_percent"
            }
        })
        
        # Track hyperparameters
        experiment.log_params({
            "learning_rate": 0.001,
            "batch_size": 32,
            "architecture": "resnet50",
            "optimizer": "adamw",
            "scheduler": "cosine_annealing"
        })
        
        return experiment
    
    def validate_data_quality(self, dataset_path):
        """Validate data before training"""
        validation_results = self.client.data_streams.validate_dataset({
            "dataset_path": dataset_path,
            "checks": [
                "completeness",
                "uniqueness", 
                "consistency",
                "distribution_drift",
                "label_balance"
            ],
            "reference_dataset": "production_baseline"
        })
        
        if not validation_results.passed:
            raise ValueError(f"Data validation failed: {validation_results.errors}")
        
        return validation_results
    
    def configure_training_with_best_practices(self, model_config):
        """Configure training job with recommended settings"""
        training_config = {
            "model_config": model_config,
            "training_settings": {
                # Reproducibility
                "random_seed": 42,
                "deterministic": True,
                
                # Optimization
                "mixed_precision": True,
                "gradient_clipping": 1.0,
                "weight_decay": 0.01,
                
                # Regularization
                "dropout": 0.1,
                "label_smoothing": 0.1,
                "data_augmentation": {
                    "enabled": True,
                    "strategy": "auto_augment"
                },
                
                # Early stopping
                "early_stopping": {
                    "patience": 10,
                    "min_delta": 0.001,
                    "restore_best_weights": True
                },
                
                # Checkpointing
                "checkpointing": {
                    "save_frequency": "epoch",
                    "keep_top_k": 3,
                    "metric": "val_accuracy"
                }
            },
            "validation": {
                "validation_split": 0.2,
                "cross_validation": {
                    "enabled": True,
                    "folds": 5,
                    "stratified": True
                }
            },
            "monitoring": {
                "log_frequency": 100,  # Every 100 steps
                "metrics": ["loss", "accuracy", "learning_rate", "gradient_norm"],
                "visualizations": ["confusion_matrix", "learning_curves"]
            }
        }
        
        return training_config
    
    def train_with_hyperparameter_optimization(self, base_config):
        """Train model with systematic hyperparameter optimization"""
        
        # Define search space based on best practices
        search_space = {
            "learning_rate": {
                "type": "log_uniform",
                "min": 1e-5,
                "max": 1e-2,
                "recommended_range": [1e-4, 1e-3]
            },
            "batch_size": {
                "type": "categorical",
                "choices": [16, 32, 64, 128],
                "recommended": 32
            },
            "optimizer": {
                "type": "categorical",
                "choices": ["adam", "adamw", "sgd"],
                "recommended": "adamw"
            },
            "weight_decay": {
                "type": "uniform",
                "min": 0.0,
                "max": 0.1,
                "recommended_range": [0.01, 0.05]
            }
        }
        
        # Use Bayesian optimization for efficient search
        hpo_job = self.client.cortexflow.create_hpo_job({
            "base_config": base_config,
            "search_space": search_space,
            "optimization_method": "bayesian",
            "objective": {
                "metric": "val_accuracy",
                "direction": "maximize"
            },
            "budget": {
                "max_trials": 30,
                "max_runtime": "12h",
                "early_stopping": {
                    "enabled": True,
                    "patience": 5
                }
            },
            "resource_allocation": {
                "parallel_trials": 4,
                "instance_type": "gpu.medium"
            }
        })
        
        return hpo_job
    
    def implement_model_validation(self, model_id):
        """Comprehensive model validation before deployment"""
        
        validation_suite = {
            "performance_tests": [
                {
                    "name": "accuracy_test",
                    "test_set": "holdout_test_set",
                    "min_accuracy": 0.85
                },
                {
                    "name": "robustness_test",
                    "test_set": "adversarial_examples",
                    "max_accuracy_drop": 0.1
                }
            ],
            "bias_tests": [
                {
                    "name": "demographic_parity",
                    "protected_attributes": ["gender", "age"],
                    "max_bias": 0.1
                },
                {
                    "name": "equalized_odds",
                    "protected_attributes": ["ethnicity"],
                    "max_bias": 0.15
                }
            ],
            "inference_tests": [
                {
                    "name": "latency_test",
                    "max_latency": "100ms",
                    "percentile": 95
                },
                {
                    "name": "throughput_test",
                    "min_throughput": "1000_requests_per_second"
                }
            ]
        }
        
        validation_results = self.client.models.validate({
            "model_id": model_id,
            "validation_suite": validation_suite,
            "generate_report": True
        })
        
        return validation_results

# Usage example
trainer = ModelTrainingBestPractices(client)

# 1. Set up experiment tracking
experiment = trainer.setup_experiment_tracking("production_classifier_v2")

# 2. Validate data quality
trainer.validate_data_quality("s3://training-data/v1.2.3/")

# 3. Configure training with best practices
model_config = {"architecture": "efficientnet_b3", "num_classes": 10}
training_config = trainer.configure_training_with_best_practices(model_config)

# 4. Run hyperparameter optimization
hpo_job = trainer.train_with_hyperparameter_optimization(training_config)

# 5. Validate best model
best_model = hpo_job.get_best_model()
validation_results = trainer.implement_model_validation(best_model.id)

if validation_results.passed:
    print("✅ Model ready for deployment")
else:
    print("❌ Model failed validation:", validation_results.issues)

Production Deployment Best Practices

Deployment Strategy

python
# Production deployment best practices
class ProductionDeploymentBestPractices:
    
    def __init__(self, client):
        self.client = client
    
    def implement_blue_green_deployment(self, model_id, production_deployment):
        """Implement blue-green deployment pattern"""
        
        # Step 1: Deploy green version
        green_deployment = self.client.models.deploy({
            "model_id": model_id,
            "name": f"{production_deployment}-green",
            "config": {
                "instance_type": "gpu.medium",
                "auto_scaling": {
                    "min_instances": 1,
                    "max_instances": 5
                },
                "health_check": {
                    "enabled": True,
                    "endpoint": "/health",
                    "interval": "30s"
                }
            }
        })
        
        # Step 2: Wait for green to be ready
        green_deployment.wait_until_ready(timeout=600)
        
        # Step 3: Run smoke tests on green
        smoke_test_results = self.run_smoke_tests(green_deployment.name)
        
        if not smoke_test_results.passed:
            self.client.deployments.delete(green_deployment.id)
            raise Exception(f"Smoke tests failed: {smoke_test_results.errors}")
        
        # Step 4: Run load tests
        load_test_results = self.run_load_tests(green_deployment.name)
        
        if not load_test_results.passed:
            self.client.deployments.delete(green_deployment.id) 
            raise Exception(f"Load tests failed: {load_test_results.errors}")
        
        # Step 5: Gradually shift traffic
        self.gradual_traffic_shift(production_deployment, green_deployment.name)
        
        # Step 6: Monitor for issues
        monitoring_results = self.monitor_deployment_health(
            green_deployment.name, 
            duration="30m"
        )
        
        if monitoring_results.healthy:
            # Step 7: Complete cutover
            self.client.deployments.set_traffic_split({
                green_deployment.name: 100,
                production_deployment: 0
            })
            
            # Step 8: Clean up blue deployment
            self.client.deployments.delete(production_deployment)
            
            # Step 9: Rename green to production
            self.client.deployments.rename(
                green_deployment.id, 
                production_deployment
            )
            
            return green_deployment
        else:
            # Rollback on issues
            self.rollback_deployment(production_deployment, green_deployment.name)
            raise Exception("Deployment health check failed, rolled back")
    
    def implement_canary_deployment(self, model_id, production_deployment):
        """Implement canary deployment with gradual rollout"""
        
        # Deploy canary version
        canary_deployment = self.client.models.deploy({
            "model_id": model_id,
            "name": f"{production_deployment}-canary",
            "config": {
                "instance_type": "gpu.small",  # Start small
                "auto_scaling": {"min_instances": 1, "max_instances": 2}
            }
        })
        
        canary_deployment.wait_until_ready()
        
        # Canary rollout phases
        rollout_phases = [
            {"traffic_percent": 1, "duration": "10m", "success_criteria": {"error_rate": 0.01}},
            {"traffic_percent": 5, "duration": "20m", "success_criteria": {"error_rate": 0.005}},
            {"traffic_percent": 25, "duration": "30m", "success_criteria": {"latency_p95": "200ms"}},
            {"traffic_percent": 50, "duration": "1h", "success_criteria": {"accuracy": 0.85}},
            {"traffic_percent": 100, "duration": "ongoing", "success_criteria": {}}
        ]
        
        for phase in rollout_phases:
            print(f"Starting canary phase: {phase['traffic_percent']}% traffic")
            
            # Set traffic split
            self.client.deployments.set_traffic_split({
                production_deployment: 100 - phase["traffic_percent"],
                canary_deployment.name: phase["traffic_percent"]
            })
            
            # Monitor phase
            phase_results = self.monitor_canary_phase(
                canary_deployment.name,
                duration=phase["duration"],
                success_criteria=phase["success_criteria"]
            )
            
            if not phase_results.success:
                print(f"Canary phase failed: {phase_results.issues}")
                self.rollback_canary(production_deployment, canary_deployment.name)
                return False
            
            print(f"Canary phase {phase['traffic_percent']}% completed successfully")
        
        # Promote canary to production
        self.promote_canary_to_production(production_deployment, canary_deployment.name)
        return True
    
    def run_smoke_tests(self, deployment_name):
        """Run comprehensive smoke tests"""
        
        test_cases = [
            {
                "name": "health_check",
                "endpoint": "/health",
                "expected_status": 200
            },
            {
                "name": "prediction_test",
                "endpoint": "/predict",
                "input": {"text": "test input"},
                "expected_format": "prediction_response"
            },
            {
                "name": "batch_prediction_test",
                "endpoint": "/predict/batch",
                "input": [{"text": f"test {i}"} for i in range(10)],
                "expected_count": 10
            },
            {
                "name": "error_handling_test",
                "endpoint": "/predict",
                "input": {"invalid": "data"},
                "expected_status": 400
            }
        ]
        
        results = []
        for test in test_cases:
            try:
                result = self.client.deployments.test_endpoint(
                    deployment_name=deployment_name,
                    test_case=test
                )
                results.append({"test": test["name"], "passed": result.success})
            except Exception as e:
                results.append({"test": test["name"], "passed": False, "error": str(e)})
        
        passed = all(r["passed"] for r in results)
        return type('SmokeTestResults', (), {
            "passed": passed, 
            "results": results,
            "errors": [r.get("error") for r in results if not r["passed"]]
        })()
    
    def implement_feature_flags(self, deployment_name):
        """Implement feature flags for controlled rollouts"""
        
        feature_flags = {
            "new_model_enabled": {
                "description": "Enable new model version",
                "default_value": False,
                "rollout_strategy": {
                    "type": "percentage",
                    "initial_percentage": 0,
                    "target_percentage": 100,
                    "increment": 10,
                    "interval": "1h"
                },
                "targeting_rules": [
                    {
                        "condition": "user.tier == 'premium'",
                        "enabled": True
                    },
                    {
                        "condition": "user.beta_tester == True",
                        "enabled": True
                    }
                ]
            },
            "advanced_features": {
                "description": "Enable advanced model features",
                "default_value": False,
                "rollout_strategy": {
                    "type": "user_segments",
                    "segments": ["internal_users", "beta_testers", "premium_users"]
                }
            }
        }
        
        return self.client.deployments.configure_feature_flags({
            "deployment_name": deployment_name,
            "flags": feature_flags,
            "monitoring": {
                "track_usage": True,
                "track_performance": True,
                "alert_on_errors": True
            }
        })

    def setup_deployment_monitoring(self, deployment_name):
        """Set up comprehensive deployment monitoring"""
        
        monitoring_config = {
            "metrics": {
                "business_metrics": [
                    "prediction_accuracy",
                    "user_satisfaction", 
                    "conversion_rate",
                    "revenue_impact"
                ],
                "technical_metrics": [
                    "response_time",
                    "throughput",
                    "error_rate",
                    "cpu_utilization",
                    "memory_usage",
                    "gpu_utilization"
                ],
                "ml_metrics": [
                    "prediction_confidence",
                    "feature_drift",
                    "data_quality_score",
                    "model_staleness"
                ]
            },
            "alerts": [
                {
                    "name": "High Error Rate",
                    "condition": "error_rate > 0.01",
                    "severity": "critical",
                    "actions": ["auto_rollback", "page_oncall"]
                },
                {
                    "name": "Performance Degradation", 
                    "condition": "p95_latency > 500ms",
                    "severity": "warning",
                    "actions": ["scale_up", "notify_team"]
                },
                {
                    "name": "Accuracy Drop",
                    "condition": "accuracy < baseline - 0.05",
                    "severity": "high",
                    "actions": ["flag_for_review", "alert_ml_team"]
                }
            ],
            "dashboards": [
                {
                    "name": "Production Overview",
                    "widgets": ["error_rate", "latency", "throughput", "accuracy"]
                },
                {
                    "name": "Business Impact",
                    "widgets": ["conversion_rate", "revenue_impact", "user_satisfaction"]
                }
            ]
        }
        
        return self.client.cortexlogs.create_deployment_monitor({
            "deployment_name": deployment_name,
            "config": monitoring_config
        })

# Usage example
deployer = ProductionDeploymentBestPractices(client)

# Blue-green deployment
try:
    new_deployment = deployer.implement_blue_green_deployment(
        model_id="new_model_v2",
        production_deployment="production-classifier"
    )
    print("✅ Blue-green deployment completed successfully")
except Exception as e:
    print(f"❌ Deployment failed: {e}")

# Set up monitoring for new deployment
deployer.setup_deployment_monitoring(new_deployment.name)
print("✅ Monitoring configured")

Security Best Practices

🔒 Security is Critical: AI systems often handle sensitive data and make important decisions. Follow these security practices to protect your models and data.

Data Security

python
# Data security best practices
class DataSecurityBestPractices:
    
    def __init__(self, client):
        self.client = client
    
    def implement_data_encryption(self):
        """Implement end-to-end data encryption"""
        
        encryption_config = {
            "data_at_rest": {
                "algorithm": "AES-256",
                "key_management": "customer_managed",
                "key_rotation": "automatic",
                "rotation_period": "90_days"
            },
            "data_in_transit": {
                "protocol": "TLS_1_3",
                "cipher_suites": ["TLS_AES_256_GCM_SHA384"],
                "certificate_validation": "strict"
            },
            "data_in_processing": {
                "memory_encryption": True,
                "secure_enclaves": True,
                "confidential_computing": True
            }
        }
        
        return self.client.security.configure_encryption(encryption_config)
    
    def setup_data_access_controls(self):
        """Configure fine-grained data access controls"""
        
        access_policies = {
            "data_classification": {
                "public": {"encryption": "optional", "access_logging": False},
                "internal": {"encryption": "required", "access_logging": True},
                "confidential": {"encryption": "required", "access_logging": True, "approval_required": True},
                "restricted": {"encryption": "required", "access_logging": True, "approval_required": True, "audit_trail": True}
            },
            "role_based_access": {
                "data_scientist": {
                    "permissions": ["read", "analyze"],
                    "data_types": ["public", "internal"],
                    "conditions": ["within_office_hours", "from_approved_locations"]
                },
                "ml_engineer": {
                    "permissions": ["read", "process", "deploy"],
                    "data_types": ["public", "internal", "confidential"],
                    "conditions": ["mfa_required"]
                },
                "admin": {
                    "permissions": ["all"],
                    "data_types": ["all"],
                    "conditions": ["dual_approval_required"]
                }
            },
            "data_lineage": {
                "track_access": True,
                "track_transformations": True,
                "track_sharing": True,
                "retention_period": "7_years"
            }
        }
        
        return self.client.security.configure_data_access(access_policies)
    
    def implement_privacy_protection(self):
        """Implement privacy protection measures"""
        
        privacy_config = {
            "data_minimization": {
                "collect_only_necessary": True,
                "auto_deletion": {
                    "enabled": True,
                    "retention_period": "2_years",
                    "deletion_method": "cryptographic_erasure"
                }
            },
            "anonymization": {
                "pii_detection": True,
                "automatic_masking": True,
                "techniques": ["k_anonymity", "differential_privacy"],
                "privacy_budget": 1.0
            },
            "consent_management": {
                "track_consent": True,
                "granular_permissions": True,
                "easy_withdrawal": True,
                "consent_proofs": True
            },
            "privacy_by_design": {
                "default_privacy_settings": "maximum",
                "purpose_limitation": True,
                "storage_limitation": True,
                "transparency": True
            }
        }
        
        return self.client.security.configure_privacy_protection(privacy_config)

# Usage
security = DataSecurityBestPractices(client)
security.implement_data_encryption()
security.setup_data_access_controls()
security.implement_privacy_protection()

Model Security

python
# Model security best practices
class ModelSecurityBestPractices:
    
    def __init__(self, client):
        self.client = client
    
    def implement_model_protection(self, model_id):
        """Protect models from attacks and unauthorized access"""
        
        protection_config = {
            "adversarial_detection": {
                "enabled": True,
                "methods": ["statistical_distance", "feature_squeezing"],
                "threshold": 0.8,
                "action": "reject_and_log"
            },
            "input_validation": {
                "schema_validation": True,
                "range_checking": True,
                "format_validation": True,
                "sanitization": True
            },
            "output_filtering": {
                "confidence_threshold": 0.7,
                "bias_detection": True,
                "harmful_content_filter": True,
                "information_leakage_prevention": True
            },
            "model_watermarking": {
                "enabled": True,
                "technique": "digital_watermark",
                "verification_required": True
            }
        }
        
        return self.client.security.configure_model_protection({
            "model_id": model_id,
            "config": protection_config
        })
    
    def setup_model_integrity_monitoring(self, deployment_name):
        """Monitor model integrity and detect tampering"""
        
        integrity_config = {
            "model_verification": {
                "checksum_validation": True,
                "signature_verification": True,
                "hash_algorithm": "SHA-256"
            },
            "runtime_monitoring": {
                "behavior_analysis": True,
                "performance_baseline": True,
                "anomaly_detection": True,
                "drift_detection": True
            },
            "attack_detection": {
                "model_inversion": True,
                "membership_inference": True,
                "model_extraction": True,
                "backdoor_detection": True
            },
            "alerts": [
                {
                    "type": "integrity_violation",
                    "severity": "critical",
                    "action": "immediate_shutdown"
                },
                {
                    "type": "attack_detected",
                    "severity": "high", 
                    "action": "isolate_and_investigate"
                }
            ]
        }
        
        return self.client.security.configure_integrity_monitoring({
            "deployment_name": deployment_name,
            "config": integrity_config
        })
    
    def implement_secure_inference(self, deployment_name):
        """Implement secure inference practices"""
        
        secure_inference_config = {
            "request_authentication": {
                "api_key_required": True,
                "jwt_validation": True,
                "client_certificates": True
            },
            "rate_limiting": {
                "requests_per_minute": 1000,
                "burst_limit": 100,
                "per_user_limits": True
            },
            "request_logging": {
                "log_all_requests": True,
                "include_metadata": True,
                "exclude_sensitive_data": True,
                "retention_period": "1_year"
            },
            "response_security": {
                "strip_internal_info": True,
                "add_security_headers": True,
                "content_type_validation": True
            }
        }
        
        return self.client.security.configure_secure_inference({
            "deployment_name": deployment_name,
            "config": secure_inference_config
        })

# Usage
model_security = ModelSecurityBestPractices(client)
model_security.implement_model_protection("production_model")
model_security.setup_model_integrity_monitoring("production-classifier")
model_security.implement_secure_inference("production-classifier")

Performance Optimization Best Practices

Model Optimization

python
# Performance optimization best practices
class PerformanceOptimizationBestPractices:
    
    def __init__(self, client):
        self.client = client
    
    def optimize_model_for_inference(self, model_id):
        """Optimize model for production inference"""
        
        optimization_techniques = {
            "quantization": {
                "enabled": True,
                "precision": "int8",  # or "fp16", "int4"
                "calibration_dataset": "representative_sample",
                "accuracy_threshold": 0.02  # Max 2% accuracy loss
            },
            "pruning": {
                "enabled": True,
                "sparsity_level": 0.5,  # Remove 50% of weights
                "structured": True,
                "fine_tuning_epochs": 10
            },
            "distillation": {
                "enabled": True,
                "teacher_model": model_id,
                "student_architecture": "smaller_efficient_model",
                "temperature": 4.0,
                "alpha": 0.7
            },
            "graph_optimization": {
                "operator_fusion": True,
                "constant_folding": True,
                "dead_code_elimination": True,
                "layout_optimization": True
            },
            "compilation": {
                "framework": "tensorrt",  # or "onnx", "torchscript"
                "target_hardware": "gpu",
                "batch_size_optimization": True,
                "dynamic_shapes": False
            }
        }
        
        optimized_model = self.client.models.optimize({
            "model_id": model_id,
            "techniques": optimization_techniques,
            "validation": {
                "accuracy_test": True,
                "performance_benchmark": True,
                "memory_profiling": True
            }
        })
        
        return optimized_model
    
    def implement_caching_strategy(self, deployment_name):
        """Implement intelligent caching for improved performance"""
        
        caching_config = {
            "model_caching": {
                "enabled": True,
                "cache_size": "2GB",
                "eviction_policy": "LRU",
                "preload_models": True
            },
            "prediction_caching": {
                "enabled": True,
                "cache_duration": "1h",
                "similarity_threshold": 0.95,
                "cache_size": "500MB",
                "exclude_sensitive": True
            },
            "feature_caching": {
                "enabled": True,
                "cache_duration": "30m",
                "cache_size": "1GB",
                "update_strategy": "lazy"
            },
            "distributed_caching": {
                "enabled": True,
                "backend": "redis",
                "cluster_mode": True,
                "replication_factor": 2
            }
        }
        
        return self.client.deployments.configure_caching({
            "deployment_name": deployment_name,
            "config": caching_config
        })
    
    def optimize_batch_processing(self, deployment_name):
        """Optimize batch processing for throughput"""
        
        batch_config = {
            "dynamic_batching": {
                "enabled": True,
                "max_batch_size": 64,
                "max_delay": "50ms",
                "batch_timeout": "100ms"
            },
            "adaptive_batching": {
                "enabled": True,
                "target_latency": "200ms",
                "min_batch_size": 1,
                "max_batch_size": 128,
                "adjustment_interval": "1m"
            },
            "batch_optimization": {
                "padding_strategy": "minimal",
                "sort_by_length": True,
                "sequence_bucketing": True,
                "memory_efficient": True
            },
            "pipeline_parallelism": {
                "enabled": True,
                "stages": ["preprocessing", "inference", "postprocessing"],
                "overlap_computation": True
            }
        }
        
        return self.client.deployments.configure_batch_processing({
            "deployment_name": deployment_name,
            "config": batch_config
        })
    
    def implement_auto_scaling_optimization(self, deployment_name):
        """Implement intelligent auto-scaling"""
        
        scaling_config = {
            "metrics_based_scaling": {
                "cpu_utilization": {"target": 70, "weight": 0.3},
                "gpu_utilization": {"target": 80, "weight": 0.4},
                "queue_depth": {"target": 10, "weight": 0.3}
            },
            "predictive_scaling": {
                "enabled": True,
                "prediction_window": "30m",
                "confidence_threshold": 0.8,
                "scaling_buffer": 1.2
            },
            "scaling_policies": {
                "scale_up": {
                    "cooldown": "2m",
                    "step_size": 2,
                    "max_instances": 20
                },
                "scale_down": {
                    "cooldown": "5m",
                    "step_size": 1,
                    "min_instances": 1
                }
            },
            "cost_optimization": {
                "spot_instances": {
                    "enabled": True,
                    "percentage": 70,
                    "fallback_on_demand": True
                },
                "schedule_based": {
                    "business_hours_scaling": True,
                    "weekend_downscaling": True
                }
            }
        }
        
        return self.client.deployments.configure_auto_scaling({
            "deployment_name": deployment_name,
            "config": scaling_config
        })

# Usage
optimizer = PerformanceOptimizationBestPractices(client)

# Optimize model for production
optimized_model = optimizer.optimize_model_for_inference("base_model_v1")

# Deploy optimized model
deployment = client.models.deploy({
    "model_id": optimized_model.id,
    "name": "optimized-production-model",
    "config": {"instance_type": "gpu.medium"}
})

# Configure performance optimizations
optimizer.implement_caching_strategy(deployment.name)
optimizer.optimize_batch_processing(deployment.name)
optimizer.implement_auto_scaling_optimization(deployment.name)

print("✅ Performance optimizations configured")

Cost Optimization Best Practices

💰 Cost Control: AI infrastructure can be expensive. Follow these practices to optimize costs while maintaining performance and reliability.
python
# Cost optimization best practices
class CostOptimizationBestPractices:
    
    def __init__(self, client):
        self.client = client
    
    def implement_resource_optimization(self):
        """Implement comprehensive resource optimization"""
        
        optimization_strategies = {
            "right_sizing": {
                "enabled": True,
                "evaluation_period": "7d",
                "utilization_threshold": 60,
                "recommendation_engine": True,
                "auto_apply": False  # Require approval
            },
            "scheduling": {
                "dev_environment_shutdown": {
                    "enabled": True,
                    "schedule": "weekdays_18:00_to_08:00",
                    "weekends": "full_shutdown"
                },
                "training_job_scheduling": {
                    "off_peak_hours": True,
                    "priority_queuing": True,
                    "spot_instance_preference": True
                }
            },
            "resource_pooling": {
                "shared_dev_instances": True,
                "dynamic_allocation": True,
                "priority_based_preemption": True
            }
        }
        
        return self.client.cost_optimization.configure_strategies(optimization_strategies)
    
    def setup_budget_controls(self):
        """Set up budget controls and alerts"""
        
        budget_config = {
            "monthly_budgets": {
                "development": {"limit": 2000, "alert_thresholds": [75, 90]},
                "staging": {"limit": 1000, "alert_thresholds": [80, 95]},
                "production": {"limit": 10000, "alert_thresholds": [70, 85, 95]}
            },
            "project_budgets": {
                "nlp_project": {"limit": 5000, "period": "quarterly"},
                "vision_project": {"limit": 3000, "period": "monthly"}
            },
            "auto_actions": {
                "at_90_percent": ["pause_dev_training", "notify_teams"],
                "at_100_percent": ["pause_non_critical", "escalate_to_management"]
            },
            "cost_allocation": {
                "by_team": True,
                "by_project": True,
                "by_environment": True,
                "chargeback_enabled": True
            }
        }
        
        return self.client.cost_optimization.configure_budgets(budget_config)
    
    def implement_spot_instance_strategy(self):
        """Implement spot instance strategy for cost savings"""
        
        spot_config = {
            "workload_suitability": {
                "training_jobs": {
                    "spot_percentage": 80,
                    "fault_tolerance": "checkpoint_based",
                    "max_interruption_frequency": "low"
                },
                "batch_inference": {
                    "spot_percentage": 60,
                    "fallback_strategy": "on_demand"
                },
                "development": {
                    "spot_percentage": 90,
                    "data_persistence": "external_storage"
                }
            },
            "spot_fleet_config": {
                "diversification": True,
                "multiple_instance_types": True,
                "multiple_availability_zones": True,
                "target_capacity": "flexible"
            },
            "interruption_handling": {
                "graceful_shutdown": True,
                "checkpoint_frequency": "5m",
                "auto_resume": True,
                "notification_lead_time": "2m"
            }
        }
        
        return self.client.cost_optimization.configure_spot_instances(spot_config)
    
    def setup_cost_monitoring_and_reporting(self):
        """Set up comprehensive cost monitoring"""
        
        monitoring_config = {
            "real_time_tracking": {
                "granularity": "hourly",
                "cost_attribution": ["user", "project", "deployment"],
                "anomaly_detection": True
            },
            "reporting": {
                "daily_summaries": True,
                "weekly_detailed_reports": True,
                "monthly_trend_analysis": True,
                "recipients": ["finance@company.com", "engineering-leads@company.com"]
            },
            "cost_forecasting": {
                "enabled": True,
                "forecast_horizon": "3_months",
                "confidence_interval": 90,
                "scenario_analysis": True
            },
            "optimization_recommendations": {
                "automated_analysis": True,
                "savings_opportunities": True,
                "risk_assessment": True,
                "implementation_priority": True
            }
        }
        
        return self.client.cost_optimization.configure_monitoring(monitoring_config)

# Cost optimization implementation
cost_optimizer = CostOptimizationBestPractices(client)

# Set up resource optimization
cost_optimizer.implement_resource_optimization()
print("✅ Resource optimization configured")

# Configure budget controls
cost_optimizer.setup_budget_controls()
print("✅ Budget controls established")

# Implement spot instance strategy
cost_optimizer.implement_spot_instance_strategy()
print("✅ Spot instance strategy implemented")

# Set up monitoring and reporting
cost_optimizer.setup_cost_monitoring_and_reporting()
print("✅ Cost monitoring configured")

# Generate initial cost report
cost_report = client.cost_optimization.generate_report({
    "period": "current_month",
    "include_recommendations": True,
    "detail_level": "comprehensive"
})

print(f"Current month spend: ${cost_report.total_cost:.2f}")
print(f"Projected savings: ${cost_report.potential_savings:.2f}")
print(f"Top recommendation: {cost_report.top_recommendation}")

Compliance and Governance Best Practices

⚖️ Regulatory Compliance: AI systems must comply with various regulations like GDPR, CCPA, and industry-specific standards. Implement proper governance from the start.
python
# Compliance and governance best practices
class ComplianceGovernanceBestPractices:
    
    def __init__(self, client):
        self.client = client
    
    def implement_gdpr_compliance(self):
        """Implement GDPR compliance measures"""
        
        gdpr_config = {
            "data_subject_rights": {
                "right_to_access": {
                    "enabled": True,
                    "response_time": "30_days",
                    "automated_reports": True
                },
                "right_to_rectification": {
                    "enabled": True,
                    "data_correction_workflow": True
                },
                "right_to_erasure": {
                    "enabled": True,
                    "deletion_verification": True,
                    "backup_deletion": True
                },
                "right_to_portability": {
                    "enabled": True,
                    "export_formats": ["json", "csv", "xml"]
                }
            },
            "consent_management": {
                "explicit_consent": True,
                "granular_permissions": True,
                "consent_withdrawal": True,
                "consent_records": "permanent_audit_trail"
            },
            "privacy_by_design": {
                "data_minimization": True,
                "purpose_limitation": True,
                "storage_limitation": True,
                "accuracy_principle": True
            },
            "dpo_requirements": {
                "dpo_contact": "dpo@company.com",
                "privacy_impact_assessments": True,
                "data_breach_notification": {
                    "internal_notification": "immediate",
                    "authority_notification": "72_hours",
                    "subject_notification": "without_undue_delay"
                }
            }
        }
        
        return self.client.compliance.configure_gdpr(gdpr_config)
    
    def implement_model_governance(self):
        """Implement comprehensive model governance"""
        
        governance_framework = {
            "model_lifecycle_management": {
                "development_standards": {
                    "code_review_required": True,
                    "testing_requirements": ["unit", "integration", "bias"],
                    "documentation_standards": "comprehensive",
                    "version_control": "mandatory"
                },
                "approval_workflow": {
                    "development_to_staging": ["technical_review", "security_scan"],
                    "staging_to_production": ["business_approval", "compliance_check", "performance_validation"],
                    "approver_matrix": {
                        "technical_review": "senior_ml_engineer",
                        "business_approval": "product_manager",
                        "compliance_check": "compliance_officer"
                    }
                }
            },
            "risk_management": {
                "risk_assessment": {
                    "required_for_production": True,
                    "update_frequency": "quarterly",
                    "risk_categories": ["technical", "business", "ethical", "legal"]
                },
                "bias_monitoring": {
                    "automated_testing": True,
                    "protected_attributes": ["gender", "race", "age"],
                    "fairness_metrics": ["demographic_parity", "equal_opportunity"],
                    "threshold_alerts": True
                },
                "explainability_requirements": {
                    "high_risk_decisions": "full_explanation",
                    "medium_risk_decisions": "summary_explanation",
                    "low_risk_decisions": "explanation_on_request"
                }
            },
            "audit_and_compliance": {
                "audit_trail": {
                    "model_decisions": True,
                    "data_access": True,
                    "configuration_changes": True,
                    "retention_period": "7_years"
                },
                "compliance_monitoring": {
                    "automated_checks": True,
                    "compliance_dashboard": True,
                    "violation_alerts": True,
                    "remediation_workflows": True
                }
            }
        }
        
        return self.client.governance.configure_framework(governance_framework)
    
    def setup_audit_logging(self):
        """Set up comprehensive audit logging"""
        
        audit_config = {
            "log_categories": {
                "access_logs": {
                    "user_authentication": True,
                    "api_access": True,
                    "data_access": True,
                    "admin_actions": True
                },
                "model_logs": {
                    "training_events": True,
                    "deployment_events": True,
                    "prediction_logs": True,
                    "model_updates": True
                },
                "system_logs": {
                    "configuration_changes": True,
                    "security_events": True,
                    "error_events": True,
                    "performance_events": False  # Too verbose
                }
            },
            "log_retention": {
                "security_logs": "10_years",
                "compliance_logs": "7_years",
                "operational_logs": "2_years",
                "debug_logs": "30_days"
            },
            "log_integrity": {
                "cryptographic_hashing": True,
                "tamper_detection": True,
                "secure_storage": True,
                "log_signing": True
            },
            "compliance_reporting": {
                "automated_reports": True,
                "report_schedules": {
                    "daily": ["security_summary"],
                    "weekly": ["access_report", "model_usage"],
                    "monthly": ["compliance_status", "audit_summary"],
                    "quarterly": ["risk_assessment", "governance_review"]
                }
            }
        }
        
        return self.client.compliance.configure_audit_logging(audit_config)

# Compliance implementation
compliance = ComplianceGovernanceBestPractices(client)

# Implement GDPR compliance
compliance.implement_gdpr_compliance()
print("✅ GDPR compliance configured")

# Set up model governance
compliance.implement_model_governance()
print("✅ Model governance framework established")

# Configure audit logging
compliance.setup_audit_logging()
print("✅ Audit logging configured")

# Generate compliance dashboard
dashboard = client.compliance.create_dashboard({
    "widgets": [
        "compliance_status_overview",
        "gdpr_requests_tracking", 
        "model_approval_pipeline",
        "audit_log_summary",
        "risk_assessment_status"
    ],
    "refresh_interval": "1h",
    "access_control": ["compliance_team", "legal_team", "executives"]
})

print(f"✅ Compliance dashboard created: {dashboard.url}")
🎯 Key Takeaways:
  • • Start with data quality and security from day one
  • • Implement comprehensive monitoring before going to production
  • • Use gradual rollout strategies for safe deployments
  • • Establish clear governance and compliance processes early
  • • Optimize for cost without compromising reliability
  • • Document everything and maintain audit trails
  • • Plan for failure and have rollback strategies
  • • Regular security audits and penetration testing

Code Examples

Practical examples and code snippets to help you get started quickly with common AICortex use cases.

Image Classification

Build and deploy an image classification model using pre-trained ResNet:

python
import aicortex
from PIL import Image
import requests
from io import BytesIO

# Initialize client
client = aicortex.Client(api_key="your_api_key")

# Deploy ResNet-50 model
deployment = client.models.deploy(
    model_id="resnet50-imagenet",
    name="image-classifier",
    config={
        "instance_type": "gpu.small",
        "auto_scaling": {
            "min_instances": 1,
            "max_instances": 5
        }
    }
)

print(f"Deploying model... Status: {deployment.status}")
deployment.wait_until_ready(timeout=300)
print("Model ready for inference!")

# Function to classify image
def classify_image(image_url):
    result = client.models.predict(
        deployment_name="image-classifier",
        inputs={"image": image_url}
    )
    
    print(f"Top predictions for {image_url}:")
    for pred in result.predictions[:3]:
        print(f"  {pred.label}: {pred.confidence:.1%}")
    
    return result.predictions[0]

# Example usage
image_urls = [
    "https://example.com/cat.jpg",
    "https://example.com/dog.jpg",
    "https://example.com/car.jpg"
]

for url in image_urls:
    top_prediction = classify_image(url)
    print(f"Best guess: {top_prediction.label}\n")

# Batch prediction for multiple images
batch_result = client.models.predict_batch(
    deployment_name="image-classifier",
    inputs=[{"image": url} for url in image_urls]
)

print("Batch results:")
for i, result in enumerate(batch_result.predictions):
    print(f"Image {i+1}: {result[0].label} ({result[0].confidence:.1%})")
javascript
import { AICortexClient } from '@aicortex/client';

// Initialize client
const client = new AICortexClient({
  apiKey: 'your_api_key'
});

// Deploy ResNet-50 model
async function deployImageClassifier() {
  const deployment = await client.models.deploy({
    modelId: 'resnet50-imagenet',
    name: 'image-classifier',
    config: {
      instanceType: 'gpu.small',
      autoScaling: {
        minInstances: 1,
        maxInstances: 5
      }
    }
  });

  console.log(`Deploying model... Status: ${deployment.status}`);
  await deployment.waitUntilReady({ timeout: 300000 });
  console.log('Model ready for inference!');
  
  return deployment;
}

// Function to classify image
async function classifyImage(imageUrl) {
  const result = await client.models.predict({
    deploymentName: 'image-classifier',
    inputs: { image: imageUrl }
  });
  
  console.log(`Top predictions for ${imageUrl}:`);
  result.predictions.slice(0, 3).forEach(pred => {
    console.log(`  ${pred.label}: ${(pred.confidence * 100).toFixed(1)}%`);
  });
  
  return result.predictions[0];
}

// Example usage
async function main() {
  await deployImageClassifier();
  
  const imageUrls = [
    'https://example.com/cat.jpg',
    'https://example.com/dog.jpg',
    'https://example.com/car.jpg'
  ];

  for (const url of imageUrls) {
    const topPrediction = await classifyImage(url);
    console.log(`Best guess: ${topPrediction.label}\n`);
  }

  // Batch prediction for multiple images
  const batchResult = await client.models.predictBatch({
    deploymentName: 'image-classifier',
    inputs: imageUrls.map(url => ({ image: url }))
  });

  console.log('Batch results:');
  batchResult.predictions.forEach((result, i) => {
    console.log(`Image ${i+1}: ${result[0].label} (${(result[0].confidence * 100).toFixed(1)}%)`);
  });
}

main().catch(console.error);

Text Generation with LLM

Deploy and use a large language model for text generation:

python
import aicortex

client = aicortex.Client(api_key="your_api_key")

# Deploy GPT-3.5 Turbo
deployment = client.models.deploy(
    model_id="gpt-3.5-turbo",
    name="text-generator",
    config={
        "instance_type": "gpu.medium",
        "auto_scaling": {
            "min_instances": 1,
            "max_instances": 3
        }
    }
)

deployment.wait_until_ready()

# Generate text
def generate_text(prompt, max_tokens=100, temperature=0.7):
    result = client.models.predict(
        deployment_name="text-generator",
        inputs={
            "prompt": prompt,
            "max_tokens": max_tokens,
            "temperature": temperature
        }
    )
    return result.text

# Examples
prompts = [
    "Write a short story about a robot learning to paint:",
    "Explain quantum computing in simple terms:",
    "Create a recipe for chocolate chip cookies:"
]

for prompt in prompts:
    print(f"Prompt: {prompt}")
    response = generate_text(prompt, max_tokens=150)
    print(f"Response: {response}\n")
    print("-" * 50)

# Conversational chat
def chat_with_model():
    conversation = []
    
    print("Chat with AI (type 'quit' to exit)")
    while True:
        user_input = input("You: ")
        if user_input.lower() == 'quit':
            break
            
        # Add context from conversation
        context = "\n".join([f"Human: {msg['human']}\nAI: {msg['ai']}" 
                           for msg in conversation[-3:]])  # Last 3 exchanges
        
        full_prompt = f"{context}\nHuman: {user_input}\nAI:"
        
        response = generate_text(full_prompt, max_tokens=200, temperature=0.8)
        print(f"AI: {response}")
        
        conversation.append({"human": user_input, "ai": response})

# Start chat
chat_with_model()

Audio Transcription

Transcribe audio files using Whisper models:

python
import aicortex
import requests
import tempfile
import os

client = aicortex.Client(api_key="your_api_key")

# Deploy Whisper Large V3
deployment = client.models.deploy(
    model_id="whisper-large-v3",
    name="audio-transcriber",
    config={
        "instance_type": "gpu.small",
        "auto_scaling": {
            "min_instances": 1,
            "max_instances": 3
        }
    }
)

deployment.wait_until_ready()

def transcribe_audio(audio_url, language=None):
    """Transcribe audio from URL or file path"""
    
    if audio_url.startswith('http'):
        # Download audio file
        response = requests.get(audio_url)
        with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as f:
            f.write(response.content)
            audio_path = f.name
    else:
        audio_path = audio_url
    
    try:
        # Transcribe audio
        with open(audio_path, 'rb') as audio_file:
            result = client.models.predict(
                deployment_name="audio-transcriber",
                inputs={
                    "audio": audio_file,
                    "language": language,  # Optional: "en", "es", "fr", etc.
                    "response_format": "json",
                    "temperature": 0.0
                }
            )
        
        return result
    finally:
        # Cleanup temporary file
        if audio_url.startswith('http'):
            os.unlink(audio_path)

# Example usage
audio_files = [
    "https://example.com/speech1.mp3",
    "https://example.com/speech2.wav",
    "./local_audio.mp3"
]

for audio_url in audio_files:
    print(f"Transcribing: {audio_url}")
    
    result = transcribe_audio(audio_url, language="en")
    
    print(f"Transcript: {result.text}")
    print(f"Language detected: {result.language}")
    print(f"Duration: {result.duration:.2f}s")
    
    # Print word-level timestamps if available
    if hasattr(result, 'words'):
        print("Word timestamps:")
        for word in result.words[:10]:  # First 10 words
            print(f"  {word.word} ({word.start:.1f}s - {word.end:.1f}s)")
    
    print("-" * 50)

# Batch transcription
def batch_transcribe(audio_urls):
    """Transcribe multiple audio files in parallel"""
    
    batch_inputs = []
    for url in audio_urls:
        if url.startswith('http'):
            batch_inputs.append({"audio": url})
        else:
            with open(url, 'rb') as f:
                batch_inputs.append({"audio": f.read()})
    
    results = client.models.predict_batch(
        deployment_name="audio-transcriber",
        inputs=batch_inputs
    )
    
    return results

# Process multiple files
batch_results = batch_transcribe(audio_files)
for i, result in enumerate(batch_results.predictions):
    print(f"File {i+1}: {result.text[:100]}...")

Frequently Asked Questions

Common questions about using the AICortex platform, with detailed answers and solutions.

🤔 General Questions

What is AICortex?

AICortex is a comprehensive AI infrastructure platform that provides serverless GPU training, model deployment, and intelligent orchestration for enterprise-grade AI applications. It consists of seven integrated components designed to simplify the entire AI development lifecycle.

How does pricing work?

AICortex uses a pay-per-use pricing model with no upfront costs. You're charged based on compute time (per second billing), API requests, and data storage. We offer volume discounts for high-usage customers and transparent pricing with no hidden fees.

What kind of models can I deploy?

You can deploy any type of AI model including large language models (LLMs), computer vision models, audio processing models, time series forecasting models, and custom models. We support popular frameworks like PyTorch, TensorFlow, and ONNX.

🛠️ Technical Questions

What GPU types are available?

We provide access to NVIDIA T4, V100, A100, and H100 GPUs across different instance types. Choose from gpu.small (T4), gpu.medium (V100), gpu.large (A100), and gpu.xlarge (H100) based on your model's requirements.

How fast can I deploy a model?

Pre-trained models from our Model Hub typically deploy in 2-5 minutes. Custom models may take 5-15 minutes depending on size and complexity. Our cold-start times are under 30 seconds for most models.

Can I use my own custom models?

Yes! You can upload and deploy custom models using our Model Hub. We support custom Docker containers, inference scripts, and dependency management. You maintain full control over your model's code and configuration.

What data formats are supported?

We support all common data formats including JSON, CSV, Parquet, images (JPEG, PNG, WebP), audio (MP3, WAV, FLAC), video (MP4, AVI), and binary data. Data can be ingested from S3, Google Drive, Kafka, databases, and custom APIs.

How do I monitor my deployments?

CortexLogs provides comprehensive monitoring with real-time metrics, logs, and alerts. You can track performance, costs, errors, and custom metrics through our dashboard or API. We also support integration with external monitoring tools.

🔒 Security & Compliance

How secure is my data?

We implement enterprise-grade security with AES-256 encryption, VPC isolation, SOC 2 Type II compliance, and GDPR readiness. Your data is encrypted in transit and at rest, with strict access controls and audit logging.

Do you support on-premises deployment?

Yes, we offer hybrid and on-premises deployment options for enterprise customers with specific security or compliance requirements. Contact our sales team to discuss custom deployment scenarios.

What compliance certifications do you have?

We are SOC 2 Type II compliant, GDPR ready, and working toward HIPAA compliance. We maintain comprehensive security documentation and undergo regular third-party security audits.

💰 Billing & Support

How can I control costs?

Set budget alerts, auto-scaling limits, and instance scheduling to optimize costs. Use our cost calculator, monitoring dashboard, and receive detailed billing breakdowns. We also offer reserved instances for predictable workloads.

What support options are available?

We provide 24/7 support via chat, email, and phone. Free tier includes community support, Pro tier includes priority support, and Enterprise customers get dedicated support engineers and SLA guarantees.

Can I get a refund if I'm not satisfied?

We offer a 30-day money-back guarantee for new customers. For ongoing service issues, we work with customers on a case-by-case basis to ensure satisfaction with our platform.

Still have questions? Contact our support team at support@aicortex.in or visit our support page for additional resources.

Troubleshooting

Common issues and their solutions to help you quickly resolve problems with the AICortex platform.

Authentication Issues

❌ Error: 401 Unauthorized

Symptoms: API requests return 401 status code

Possible Causes & Solutions:
  • Invalid or missing API key
    bash
    # Check if API key is set
    echo $AICORTEX_API_KEY
    
    # Verify API key format (should start with 'ak_')
    # Example: ak_1234567890abcdef...
  • Expired API key

    Generate a new API key in your dashboard and update your environment variables.

  • Incorrect Authorization header format
    bash
    # Correct format
    Authorization: Bearer your_api_key_here
    
    # Incorrect formats
    Authorization: your_api_key_here  # Missing "Bearer"
    Authorization: Token your_api_key_here  # Wrong prefix

Deployment Problems

⚠️ Deployment Stuck in "Deploying" Status

Symptoms: Model deployment doesn't progress beyond "deploying" state

Solutions:
  • • Check deployment logs: client.deployments.get_logs("deployment-name")
  • • Verify model size fits selected instance type
  • • Ensure sufficient quota for requested GPU type
  • • Try deploying to a different region if capacity issues
python
# Check deployment status and logs
deployment = client.deployments.get("my-deployment")
print(f"Status: {deployment.status}")
print(f"Error message: {deployment.error_message}")

# Get detailed logs
logs = client.deployments.get_logs("my-deployment", lines=50)
for log in logs:
    print(f"{log.timestamp}: {log.message}")

❌ Deployment Failed

Symptoms: Deployment status shows "failed"

Common Causes:
  • Resource limits: Model too large for instance type
  • Configuration errors: Invalid environment variables or settings
  • Model format issues: Incompatible model file or missing dependencies
  • Quota exceeded: Account limits reached
💡 Quick Fix: Try deploying with a larger instance type or check the error logs for specific error messages.

Performance Issues

🐌 Slow Inference Times

Symptoms: API responses take longer than expected

Optimization Steps:
  1. 1. Check instance type: Upgrade to faster GPU if needed
  2. 2. Enable auto-scaling: Add more instances to handle load
  3. 3. Optimize model: Use model quantization or pruning
  4. 4. Batch requests: Process multiple inputs together
  5. 5. Use caching: Cache frequently requested predictions
python
# Enable auto-scaling for better performance
client.deployments.update_config("my-deployment", {
    "auto_scaling": {
        "min_instances": 2,
        "max_instances": 10,
        "target_utilization": 60
    }
})

# Use batch prediction for multiple inputs
batch_inputs = [{"text": f"Sample text {i}"} for i in range(10)]
results = client.models.predict_batch(
    deployment_name="my-deployment",
    inputs=batch_inputs
)

💸 High Costs

Symptoms: Unexpected billing charges

Cost Optimization:
  • • Set auto-scaling minimums to 0 for dev environments
  • • Use smaller instance types for testing
  • • Implement request caching to reduce compute usage
  • • Set up billing alerts and budgets
  • • Use spot instances for batch processing (when available)

Common API Errors

400 Bad Request

Invalid request parameters or malformed JSON

Solutions:
  • • Validate JSON syntax
  • • Check required fields are present
  • • Verify data types match API specification

429 Too Many Requests

Rate limit exceeded

Solutions:
  • • Implement exponential backoff retry logic
  • • Upgrade to higher tier for increased limits
  • • Use batch endpoints for multiple requests
python
import time
import random

def api_call_with_retry(func, max_retries=3):
    for attempt in range(max_retries):
        try:
            return func()
        except Exception as e:
            if "429" in str(e) and attempt < max_retries - 1:
                # Exponential backoff with jitter
                delay = (2 ** attempt) + random.uniform(0, 1)
                time.sleep(delay)
                continue
            raise e

# Usage
result = api_call_with_retry(
    lambda: client.models.predict(
        deployment_name="my-model",
        inputs={"text": "Hello world"}
    )
)

500 Internal Server Error

Server-side error

Solutions:
  • • Retry the request after a brief delay
  • • Check service status page for known issues
  • • Contact support if error persists
Need more help? If you're still experiencing issues, please contact our support team with:
  • • Your API request details (remove sensitive data)
  • • Error messages and status codes
  • • Timestamp of when the issue occurred
  • • Steps you've already tried

Support

Get help from our team and community. We're here to ensure your success with the AICortex platform.

📞 Contact Support

Live Chat

Get instant help from our support team

Available 24/7 for Pro and Enterprise customers

Email Support

support@aicortex.in

Response within 4 hours for paying customers

Phone Support

+91-1147293334

Enterprise customers only

🌐 Community Resources

GitHub Repository

Code examples, SDKs, and issue tracking

github.com/aicortex/platform

Discord Community

Chat with other developers and get quick help

discord.gg/aicortex

Video Tutorials

Step-by-step guides and best practices

youtube.com/@aicortex

📚 Additional Resources

Knowledge Base

Detailed articles and guides

Status Page

Platform status and incidents

Office Hours

Weekly Q&A sessions

Blog

Updates and tutorials

🎓 Training & Onboarding
Enterprise customers receive dedicated onboarding sessions, training materials, and success management. Contact our sales team to learn more about our professional services offerings.