Comprehensive guide to building, deploying, and scaling AI applications with AICortex - the next-generation AI infrastructure platform.
AICortex is built on a modern microservices architecture designed for scalability, reliability, and security. The platform consists of seven integrated components that work together to provide a comprehensive AI infrastructure solution.
Each component operates as an independent service with well-defined APIs and responsibilities:
Each component addresses specific aspects of the AI development lifecycle, from data ingestion to model deployment and monitoring.
Enterprise-grade security with RBAC and SSO integration.
StableServerless GPU orchestration with auto-scaling capabilities.
StableMulti-source data ingestion from S3, Kafka, and more.
StableIntelligent development platform with guided workflows.
BetaComprehensive AI model registry with deployment tools.
StableML pipeline automation with distributed training.
BetaGet up and running with AICortex in under 5 minutes. This guide will walk you through the essential steps to deploy your first AI model.
Choose your preferred programming language and install the AICortex SDK:
# Install via pip
pip install aicortex
# Or install with conda
conda install -c conda-forge aicortex
# Install via npm
npm install @aicortex/client
# Or install with yarn
yarn add @aicortex/client
# No installation required for cURL
# Make sure you have curl installed
curl --version
Set up your API credentials to authenticate with the AICortex platform:
import aicortex
# Initialize the client with your API key
client = aicortex.Client(api_key="your_api_key_here")
# Alternative: set environment variable
# export AICORTEX_API_KEY="your_api_key_here"
# client = aicortex.Client() # Will use env variable
# Test authentication
user = client.auth.get_user()
print(f"Authenticated as: {user.email}")
import { AICortexClient } from '@aicortex/client';
// Initialize the client with your API key
const client = new AICortexClient({
apiKey: 'your_api_key_here'
});
// Alternative: set environment variable
// process.env.AICORTEX_API_KEY = "your_api_key_here"
// const client = new AICortexClient(); // Will use env variable
// Test authentication
const user = await client.auth.getUser();
console.log(`Authenticated as: ${user.email}`);
# Set your API key as environment variable
export AICORTEX_API_KEY="your_api_key_here"
# Test authentication
curl -H "Authorization: Bearer $AICORTEX_API_KEY" \
-H "Content-Type: application/json" \
https://api.aicortex.in/v1/auth/user
Let's deploy a pre-trained model from the Model Hub. We'll use a simple image classification model:
# Deploy a pre-trained image classification model
deployment = client.models.deploy(
model_id="resnet50-imagenet",
name="my-image-classifier",
config={
"instance_type": "gpu.small",
"auto_scaling": {
"min_instances": 1,
"max_instances": 5
}
}
)
print(f"Model deployed! Endpoint: {deployment.endpoint_url}")
print(f"Status: {deployment.status}")
# Wait for deployment to complete
deployment.wait_until_ready(timeout=300) # 5 minutes
print("Model is ready for inference!")
// Deploy a pre-trained image classification model
const deployment = await client.models.deploy({
modelId: 'resnet50-imagenet',
name: 'my-image-classifier',
config: {
instanceType: 'gpu.small',
autoScaling: {
minInstances: 1,
maxInstances: 5
}
}
});
console.log(`Model deployed! Endpoint: ${deployment.endpointUrl}`);
console.log(`Status: ${deployment.status}`);
// Wait for deployment to complete
await deployment.waitUntilReady({ timeout: 300000 }); // 5 minutes
console.log('Model is ready for inference!');
# Deploy a pre-trained image classification model
curl -X POST https://api.aicortex.in/v1/models/deploy \
-H "Authorization: Bearer $AICORTEX_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model_id": "resnet50-imagenet",
"name": "my-image-classifier",
"config": {
"instance_type": "gpu.small",
"auto_scaling": {
"min_instances": 1,
"max_instances": 5
}
}
}'
# Check deployment status
curl -H "Authorization: Bearer $AICORTEX_API_KEY" \
https://api.aicortex.in/v1/deployments/my-image-classifier
Once your model is deployed, you can start making predictions:
# Make a prediction with an image URL
result = client.models.predict(
deployment_name="my-image-classifier",
inputs={
"image": "https://example.com/cat.jpg"
}
)
print("Predictions:")
for prediction in result.predictions:
print(f" {prediction.label}: {prediction.confidence:.2%}")
# Or use a local image file
with open("local_image.jpg", "rb") as f:
result = client.models.predict(
deployment_name="my-image-classifier",
inputs={"image": f}
)
// Make a prediction with an image URL
const result = await client.models.predict({
deploymentName: 'my-image-classifier',
inputs: {
image: 'https://example.com/cat.jpg'
}
});
console.log('Predictions:');
result.predictions.forEach(prediction => {
console.log(` ${prediction.label}: ${(prediction.confidence * 100).toFixed(1)}%`);
});
// Or use a local image file (browser)
const fileInput = document.getElementById('imageFile');
const formData = new FormData();
formData.append('image', fileInput.files[0]);
const result = await client.models.predict({
deploymentName: 'my-image-classifier',
inputs: formData
});
# Make a prediction with an image URL
curl -X POST https://api.aicortex.in/v1/predict \
-H "Authorization: Bearer $AICORTEX_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"deployment_name": "my-image-classifier",
"inputs": {
"image": "https://example.com/cat.jpg"
}
}'
# Or upload a local image file
curl -X POST https://api.aicortex.in/v1/predict \
-H "Authorization: Bearer $AICORTEX_API_KEY" \
-F "deployment_name=my-image-classifier" \
-F "image=@local_image.jpg"
AICortex uses API keys for authentication. All requests to the API must include a valid API key in the Authorization header.
Include your API key in the Authorization header using the Bearer scheme:
Authorization: Bearer your_api_key_here
Set your API key as an environment variable for added security:
# Linux/macOS
export AICORTEX_API_KEY="your_api_key_here"
# Windows
set AICORTEX_API_KEY=your_api_key_here
API keys can be configured with different scopes to limit access:
Scope | Description | Permissions |
---|---|---|
read |
Read-only access | View models, deployments, logs |
write |
Read and write access | Deploy models, manage instances |
admin |
Full administrative access | All operations including billing |
API requests are rate limited based on your subscription tier:
The AICortex REST API provides programmatic access to all platform features. All endpoints are available at https://api.aicortex.in/v1
.
https://api.aicortex.in/v1
All API requests require authentication using your API key in the Authorization header:
Authorization: Bearer your_api_key_here
Content-Type: application/json
Retrieve a list of available models from the Model Hub.
Parameter | Type | Description |
---|---|---|
category |
string | Filter by model category (e.g., "nlp", "vision") |
limit |
integer | Number of models to return (default: 20, max: 100) |
offset |
integer | Number of models to skip for pagination |
curl -H "Authorization: Bearer $AICORTEX_API_KEY" \
"https://api.aicortex.in/v1/models?category=vision&limit=10"
{
"models": [
{
"id": "resnet50-imagenet",
"name": "ResNet-50 ImageNet",
"category": "vision",
"description": "Pre-trained ResNet-50 model for image classification",
"framework": "pytorch",
"version": "1.0.0",
"parameters": 25557032,
"created_at": "2024-01-15T10:30:00Z",
"updated_at": "2024-01-15T10:30:00Z"
}
],
"pagination": {
"total": 247,
"limit": 10,
"offset": 0,
"has_more": true
}
}
Deploy a model to create a scalable inference endpoint.
Field | Type | Required | Description |
---|---|---|---|
model_id |
string | Yes | ID of the model to deploy |
name |
string | Yes | Unique name for the deployment |
config |
object | No | Deployment configuration options |
curl -X POST https://api.aicortex.in/v1/models/deploy \
-H "Authorization: Bearer $AICORTEX_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model_id": "resnet50-imagenet",
"name": "production-classifier",
"config": {
"instance_type": "gpu.medium",
"auto_scaling": {
"min_instances": 1,
"max_instances": 10,
"target_utilization": 70
},
"environment": {
"MODEL_CACHE_SIZE": "2GB"
}
}
}'
{
"deployment": {
"id": "dep_abc123",
"name": "production-classifier",
"model_id": "resnet50-imagenet",
"status": "deploying",
"endpoint_url": "https://production-classifier.api.aicortex.in",
"config": {
"instance_type": "gpu.medium",
"auto_scaling": {
"min_instances": 1,
"max_instances": 10,
"target_utilization": 70
}
},
"created_at": "2024-01-20T14:30:00Z",
"estimated_ready_time": "2024-01-20T14:35:00Z"
}
}
Make predictions using a deployed model.
curl -X POST https://api.aicortex.in/v1/predict \
-H "Authorization: Bearer $AICORTEX_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"deployment_name": "production-classifier",
"inputs": {
"image": "https://example.com/image.jpg"
}
}'
{
"predictions": [
{
"label": "cat",
"confidence": 0.9543,
"class_id": 281
},
{
"label": "kitten",
"confidence": 0.0321,
"class_id": 285
},
{
"label": "dog",
"confidence": 0.0089,
"class_id": 242
}
],
"request_id": "req_xyz789",
"processing_time_ms": 145,
"model_version": "1.0.0"
}
The API uses conventional HTTP response codes to indicate success or failure:
Code | Description | Common Causes |
---|---|---|
200 | OK - Request successful | - |
400 | Bad Request - Invalid parameters | Missing required fields, invalid JSON |
401 | Unauthorized - Invalid API key | Missing or incorrect Authorization header |
404 | Not Found - Resource doesn't exist | Invalid model ID or deployment name |
429 | Too Many Requests - Rate limited | Exceeded API rate limits |
500 | Internal Server Error | Server-side issue, contact support |
{
"error": {
"code": "INVALID_MODEL_ID",
"message": "The specified model ID 'invalid-model' does not exist",
"details": {
"model_id": "invalid-model",
"available_models": [
"resnet50-imagenet",
"gpt-3.5-turbo",
"whisper-large-v3"
]
},
"request_id": "req_error_123"
}
}
The AICortex Python SDK provides a comprehensive interface for all platform capabilities with type hints, async support, and intelligent error handling.
# Install the SDK
pip install aicortex
# Or install with optional dependencies
pip install aicortex[full] # Includes visualization, async, and dev tools
# Install specific extras
pip install aicortex[async] # Async support
pip install aicortex[viz] # Visualization tools
pip install aicortex[dev] # Development utilities
import aicortex
from aicortex import Client
# Initialize with API key
client = Client(api_key="your_api_key")
# Or use environment variable
# export AICORTEX_API_KEY="your_api_key"
client = Client()
# Test connection
user = client.auth.get_user()
print(f"Connected as: {user.email}")
print(f"Organization: {user.organization}")
print(f"Plan: {user.plan}")
# Access different services
models = client.models
instances = client.instances
data_streams = client.data_streams
cortexflow = client.cortexflow
cortexlogs = client.cortexlogs
import asyncio
from aicortex import AsyncClient
async def main():
# Initialize async client
async with AsyncClient(api_key="your_api_key") as client:
# Concurrent operations
tasks = [
client.models.list(),
client.instances.list(),
client.data_streams.list()
]
models, instances, streams = await asyncio.gather(*tasks)
print(f"Found {len(models)} models")
print(f"Found {len(instances)} instances")
print(f"Found {len(streams)} data streams")
# Async prediction
result = await client.models.predict_async(
deployment_name="my-model",
inputs={"text": "Hello world"}
)
print(f"Prediction: {result.predictions[0].label}")
# Run async example
asyncio.run(main())
from aicortex import Client, Config
import logging
# Advanced configuration
config = Config(
api_key="your_api_key",
base_url="https://api.aicortex.in/v1",
timeout=30.0,
max_retries=3,
retry_backoff_factor=2.0,
verify_ssl=True,
user_agent="MyApp/1.0",
default_headers={
"X-App-Version": "1.0.0",
"X-Environment": "production"
}
)
client = Client(config=config)
# Enable debug logging
logging.basicConfig(level=logging.DEBUG)
aicortex.enable_debug_logging()
# Configure retry behavior
client.configure_retries(
max_retries=5,
backoff_factor=1.5,
status_forcelist=[429, 500, 502, 503, 504]
)
# Configure timeouts per operation type
client.configure_timeouts({
"predict": 60.0, # Prediction requests
"deploy": 300.0, # Deployment operations
"train": 3600.0, # Training operations
"upload": 600.0 # File uploads
})
from aicortex.types import (
Model, Deployment, TrainingJob,
PredictionResult, DeploymentConfig
)
from typing import List, Optional
# Fully typed responses
def deploy_model(model_id: str, config: DeploymentConfig) -> Deployment:
deployment = client.models.deploy(
model_id=model_id,
name=f"deployment-{model_id}",
config=config
)
return deployment
# IDE autocomplete and type checking
def get_models_by_category(category: str) -> List[Model]:
models: List[Model] = client.models.list(category=category)
return [model for model in models if model.accuracy > 0.9]
# Optional parameters with defaults
def predict_with_options(
deployment_name: str,
inputs: dict,
temperature: Optional[float] = None,
max_tokens: Optional[int] = None
) -> PredictionResult:
return client.models.predict(
deployment_name=deployment_name,
inputs=inputs,
temperature=temperature,
max_tokens=max_tokens
)
from aicortex.exceptions import (
AICortexError, AuthenticationError, RateLimitError,
ModelNotFoundError, DeploymentError, ValidationError
)
import time
import random
# Comprehensive error handling
def robust_prediction(deployment_name: str, inputs: dict, max_retries: int = 3):
for attempt in range(max_retries):
try:
result = client.models.predict(
deployment_name=deployment_name,
inputs=inputs
)
return result
except RateLimitError as e:
if attempt < max_retries - 1:
# Exponential backoff with jitter
delay = (2 ** attempt) + random.uniform(0, 1)
print(f"Rate limited. Retrying in {delay:.1f}s...")
time.sleep(delay)
continue
raise
except ModelNotFoundError:
print(f"Model {deployment_name} not found")
raise
except DeploymentError as e:
print(f"Deployment error: {e.message}")
if e.is_retryable and attempt < max_retries - 1:
time.sleep(5)
continue
raise
except ValidationError as e:
print(f"Input validation failed: {e.details}")
raise # Don't retry validation errors
except AICortexError as e:
print(f"API error: {e.message} (Code: {e.error_code})")
raise
# Context manager for automatic cleanup
from aicortex.context import deployment_context
with deployment_context("temp-model", auto_cleanup=True) as deployment:
# Deployment is automatically cleaned up on exit
result = client.models.predict(
deployment_name=deployment.name,
inputs={"text": "Hello world"}
)
print(result.predictions[0].label)
# Deployment automatically deleted here
# Batch predictions
batch_inputs = [
{"text": "I love this product!"},
{"text": "This is terrible."},
{"text": "It's okay, nothing special."}
]
# Process batch with progress tracking
results = client.models.predict_batch(
deployment_name="sentiment-analyzer",
inputs=batch_inputs,
batch_size=10,
show_progress=True
)
for i, result in enumerate(results):
print(f"Input {i+1}: {result.predictions[0].label}")
# Streaming predictions for real-time processing
def process_stream():
for data in client.data_streams.stream("real-time-data"):
try:
result = client.models.predict(
deployment_name="real-time-classifier",
inputs=data
)
# Process result
yield {
"input_id": data.get("id"),
"prediction": result.predictions[0].label,
"confidence": result.predictions[0].confidence,
"timestamp": time.time()
}
except Exception as e:
print(f"Error processing {data.get('id')}: {e}")
continue
# Consume streaming results
for prediction in process_stream():
print(f"Processed {prediction['input_id']}: {prediction['prediction']}")
# Built-in utilities
from aicortex.utils import (
format_size, estimate_cost, validate_inputs,
benchmark_model, optimize_batch_size
)
# Format and display information
model = client.models.get("large-language-model")
print(f"Model size: {format_size(model.size_bytes)}")
print(f"Parameters: {model.parameters:,}")
# Cost estimation
estimated_cost = estimate_cost(
model_id="gpt-3.5-turbo",
input_tokens=1000,
output_tokens=500,
requests_per_day=10000
)
print(f"Estimated monthly cost: ${estimated_cost:.2f}")
# Input validation
validation_result = validate_inputs(
model_id="image-classifier",
inputs={"image": "path/to/image.jpg"}
)
if not validation_result.is_valid:
print(f"Validation errors: {validation_result.errors}")
# Benchmark model performance
benchmark_results = benchmark_model(
deployment_name="my-model",
test_data=test_dataset,
metrics=["accuracy", "latency", "throughput"]
)
print(f"Accuracy: {benchmark_results.accuracy:.2%}")
print(f"Avg latency: {benchmark_results.avg_latency}ms")
# Optimize batch size for throughput
optimal_batch_size = optimize_batch_size(
deployment_name="my-model",
sample_inputs=sample_data,
target_latency="2s",
max_batch_size=64
)
print(f"Optimal batch size: {optimal_batch_size}")
The AICortex JavaScript SDK provides full platform access for Node.js and browser environments with TypeScript support, promise-based APIs, and streaming capabilities.
# Install with npm
npm install @aicortex/client
# Install with yarn
yarn add @aicortex/client
# Install with pnpm
pnpm add @aicortex/client
# Install with TypeScript support (included by default)
npm install @aicortex/client @types/node
const { AICortexClient } = require('@aicortex/client');
// Initialize client
const client = new AICortexClient({
apiKey: 'your_api_key',
baseURL: 'https://api.aicortex.in/v1',
timeout: 30000,
retries: 3
});
// Test connection
async function testConnection() {
try {
const user = await client.auth.getUser();
console.log(`Connected as: ${user.email}`);
console.log(`Organization: ${user.organization}`);
} catch (error) {
console.error('Connection failed:', error.message);
}
}
testConnection();
// Basic prediction
async function makePrediction() {
const result = await client.models.predict({
deploymentName: 'image-classifier',
inputs: {
image: 'https://example.com/image.jpg'
}
});
console.log('Predictions:', result.predictions);
return result.predictions[0];
}
// Deploy a model
async function deployModel() {
const deployment = await client.models.deploy({
modelId: 'resnet50-imagenet',
name: 'production-classifier',
config: {
instanceType: 'gpu.small',
autoScaling: {
minInstances: 1,
maxInstances: 5
}
}
});
console.log(`Deployment created: ${deployment.id}`);
// Wait for deployment to be ready
await deployment.waitUntilReady({ timeout: 300000 });
console.log(`Deployment ready: ${deployment.endpointUrl}`);
return deployment;
}
AICortex Browser Example
import {
AICortexClient,
Model,
Deployment,
PredictionResult,
DeploymentConfig,
TrainingJob
} from '@aicortex/client';
// Typed client initialization
const client = new AICortexClient({
apiKey: process.env.AICORTEX_API_KEY!,
timeout: 30000,
retries: 3
});
// Typed functions with interfaces
interface ImageClassificationInput {
image: string | File | Buffer;
}
interface ImageClassificationOutput {
label: string;
confidence: number;
classId: number;
}
// Strongly typed prediction function
async function classifyImage(
deploymentName: string,
image: string | File | Buffer
): Promise {
const result: PredictionResult = await client.models.predict({
deploymentName,
inputs: { image }
});
return result.predictions as ImageClassificationOutput[];
}
// Typed deployment configuration
const deploymentConfig: DeploymentConfig = {
instanceType: 'gpu.medium',
autoScaling: {
minInstances: 1,
maxInstances: 10,
targetUtilization: 70
},
environment: {
MODEL_CACHE_SIZE: '2GB',
BATCH_SIZE: '32'
}
};
// Generic model deployment function
async function deployModel(
modelId: string,
name: string,
config?: DeploymentConfig
): Promise {
const deployment = await client.models.deploy({
modelId,
name,
config: config || deploymentConfig
});
console.log(`Deploying ${modelId} as ${name}...`);
await deployment.waitUntilReady();
console.log(`Deployment ready: ${deployment.endpointUrl}`);
return deployment;
}
// Error handling with custom types
class ModelDeploymentError extends Error {
constructor(
message: string,
public readonly deploymentId: string,
public readonly errorCode: string
) {
super(message);
this.name = 'ModelDeploymentError';
}
}
async function safeModelDeployment(
modelId: string,
name: string
): Promise {
try {
return await deployModel(modelId, name);
} catch (error: any) {
if (error.code === 'INSUFFICIENT_QUOTA') {
throw new ModelDeploymentError(
'Insufficient quota for deployment',
error.deploymentId,
error.code
);
}
console.error('Deployment failed:', error.message);
return null;
}
}
// Async iteration with TypeScript
async function* processTrainingMetrics(
trainingJobId: string
): AsyncGenerator<{ step: number; loss: number; accuracy: number }> {
const job = await client.cortexflow.getTrainingJob(trainingJobId);
for await (const metric of job.streamMetrics()) {
yield {
step: metric.step,
loss: metric.loss,
accuracy: metric.accuracy
};
}
}
// Usage with async iteration
async function monitorTraining(jobId: string): Promise {
for await (const metric of processTrainingMetrics(jobId)) {
console.log(`Step ${metric.step}: Loss=${metric.loss.toFixed(4)}, Acc=${metric.accuracy.toFixed(2)}%`);
if (metric.accuracy > 0.95) {
console.log('Target accuracy reached!');
break;
}
}
}
// Streaming predictions
async function streamingInference() {
const stream = client.models.predictStream({
deploymentName: 'text-generator',
inputs: {
prompt: 'Write a story about',
maxTokens: 500,
stream: true
}
});
console.log('Streaming response:');
for await (const chunk of stream) {
process.stdout.write(chunk.text);
}
console.log('\nStream completed');
}
// Server-Sent Events for real-time updates
function monitorDeployment(deploymentName) {
const eventSource = client.deployments.createEventStream(deploymentName);
eventSource.addEventListener('status_change', (event) => {
console.log('Status update:', JSON.parse(event.data));
});
eventSource.addEventListener('metric_update', (event) => {
const metrics = JSON.parse(event.data);
console.log(`CPU: ${metrics.cpu}%, Memory: ${metrics.memory}%`);
});
eventSource.addEventListener('error', (event) => {
console.error('Deployment error:', event.data);
});
// Clean up after 1 hour
setTimeout(() => {
eventSource.close();
}, 3600000);
}
// WebSocket connection for bi-directional communication
async function setupWebSocketConnection() {
const ws = await client.createWebSocket({
protocols: ['inference', 'monitoring'],
heartbeat: true
});
ws.on('open', () => {
console.log('WebSocket connected');
// Send inference request
ws.send({
type: 'predict',
deployment: 'real-time-model',
data: { text: 'Hello world' }
});
});
ws.on('message', (data) => {
const message = JSON.parse(data);
switch (message.type) {
case 'prediction':
console.log('Prediction:', message.result);
break;
case 'status':
console.log('Status:', message.status);
break;
case 'error':
console.error('Error:', message.error);
break;
}
});
ws.on('close', () => {
console.log('WebSocket disconnected');
});
return ws;
}
const fs = require('fs');
const path = require('path');
// Upload large files with progress tracking
async function uploadLargeFile(filePath, onProgress) {
const fileSize = fs.statSync(filePath).size;
const stream = fs.createReadStream(filePath);
const uploadResult = await client.files.upload({
stream,
filename: path.basename(filePath),
size: fileSize,
onProgress: (uploaded, total) => {
const percentage = (uploaded / total) * 100;
onProgress(`Upload progress: ${percentage.toFixed(1)}%`);
}
});
console.log(`File uploaded: ${uploadResult.fileId}`);
return uploadResult;
}
// Batch file processing
async function processBatchFiles(fileUrls) {
const batchSize = 10;
const results = [];
for (let i = 0; i < fileUrls.length; i += batchSize) {
const batch = fileUrls.slice(i, i + batchSize);
const batchPromises = batch.map(async (url, index) => {
try {
const result = await client.models.predict({
deploymentName: 'document-processor',
inputs: { document: url }
});
console.log(`Processed file ${i + index + 1}/${fileUrls.length}`);
return { url, result: result.predictions[0], success: true };
} catch (error) {
console.error(`Failed to process ${url}:`, error.message);
return { url, error: error.message, success: false };
}
});
const batchResults = await Promise.allSettled(batchPromises);
results.push(...batchResults.map(r => r.value || r.reason));
// Small delay between batches to avoid rate limiting
if (i + batchSize < fileUrls.length) {
await new Promise(resolve => setTimeout(resolve, 1000));
}
}
return results;
}
// Multipart upload for very large files
async function uploadVeryLargeFile(filePath) {
const fileSize = fs.statSync(filePath).size;
const chunkSize = 10 * 1024 * 1024; // 10MB chunks
// Initialize multipart upload
const upload = await client.files.createMultipartUpload({
filename: path.basename(filePath),
size: fileSize,
chunkSize
});
const chunks = Math.ceil(fileSize / chunkSize);
const uploadPromises = [];
for (let i = 0; i < chunks; i++) {
const start = i * chunkSize;
const end = Math.min(start + chunkSize, fileSize);
const chunk = fs.createReadStream(filePath, { start, end: end - 1 });
uploadPromises.push(
client.files.uploadChunk({
uploadId: upload.uploadId,
chunkNumber: i + 1,
data: chunk
})
);
}
// Upload chunks in parallel (with concurrency limit)
const chunkResults = await Promise.all(uploadPromises);
// Complete multipart upload
const finalResult = await client.files.completeMultipartUpload({
uploadId: upload.uploadId,
chunks: chunkResults
});
console.log(`Large file uploaded successfully: ${finalResult.fileId}`);
return finalResult;
}
Webhooks allow you to receive real-time notifications about events in your AICortex account, enabling you to build reactive applications and automate workflows.
AICortex sends webhooks for various platform events:
Event Type | Description | Payload Example |
---|---|---|
deployment.created |
New model deployment created | Deployment details and status |
deployment.ready |
Deployment is ready for inference | Endpoint URL and configuration |
deployment.failed |
Deployment failed with error | Error details and failure reason |
training.started |
Training job started | Job configuration and status |
training.completed |
Training job completed successfully | Final metrics and model artifacts |
training.failed |
Training job failed | Error logs and failure details |
instance.started |
GPU instance started | Instance details and endpoints |
instance.stopped |
GPU instance stopped | Runtime duration and cost |
billing.threshold |
Billing threshold exceeded | Current usage and threshold details |
alert.triggered |
Monitoring alert triggered | Alert details and metric values |
# Create webhook endpoint
webhook = client.webhooks.create({
"url": "https://your-app.com/webhooks/aicortex",
"events": [
"deployment.created",
"deployment.ready",
"deployment.failed",
"training.completed",
"training.failed",
"billing.threshold"
],
"secret": "your_webhook_secret", # For signature verification
"description": "Production webhook for AI pipeline",
"active": True,
"retry_config": {
"max_retries": 3,
"retry_delay": "5s",
"backoff_factor": 2.0
},
"filters": {
"deployment_names": ["production-*"], # Only production deployments
"user_ids": ["user_123", "user_456"], # Specific users only
"severity": ["high", "critical"] # Only important alerts
}
})
print(f"Webhook created: {webhook.id}")
print(f"Secret: {webhook.secret}") # Store this securely
# Update webhook configuration
client.webhooks.update(webhook.id, {
"events": [
"deployment.created",
"deployment.ready",
"deployment.failed",
"training.completed",
"alert.triggered" # Added alert events
],
"active": True
})
# Test webhook endpoint
test_result = client.webhooks.test(webhook.id)
print(f"Webhook test: {test_result.status}")
if test_result.response_code != 200:
print(f"Error: {test_result.error_message}")
import hmac
import hashlib
import json
from flask import Flask, request, jsonify
app = Flask(__name__)
WEBHOOK_SECRET = "your_webhook_secret"
def verify_webhook_signature(payload, signature, secret):
"""Verify webhook signature for security"""
expected_signature = hmac.new(
secret.encode('utf-8'),
payload,
hashlib.sha256
).hexdigest()
# Compare signatures using constant-time comparison
return hmac.compare_digest(f"sha256={expected_signature}", signature)
@app.route('/webhooks/aicortex', methods=['POST'])
def handle_webhook():
# Get signature from headers
signature = request.headers.get('X-AICortex-Signature')
if not signature:
return jsonify({"error": "Missing signature"}), 401
# Get raw payload
payload = request.get_data()
# Verify signature
if not verify_webhook_signature(payload, signature, WEBHOOK_SECRET):
return jsonify({"error": "Invalid signature"}), 401
# Parse event data
try:
event = json.loads(payload)
except json.JSONDecodeError:
return jsonify({"error": "Invalid JSON"}), 400
# Process the event
try:
process_webhook_event(event)
return jsonify({"status": "success"}), 200
except Exception as e:
print(f"Error processing webhook: {e}")
return jsonify({"error": "Processing failed"}), 500
def process_webhook_event(event):
"""Process incoming webhook events"""
event_type = event.get('type')
event_data = event.get('data')
print(f"Received event: {event_type}")
if event_type == 'deployment.ready':
handle_deployment_ready(event_data)
elif event_type == 'deployment.failed':
handle_deployment_failed(event_data)
elif event_type == 'training.completed':
handle_training_completed(event_data)
elif event_type == 'billing.threshold':
handle_billing_alert(event_data)
else:
print(f"Unhandled event type: {event_type}")
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
import requests
import os
from datetime import datetime
def handle_deployment_ready(data):
"""Handle successful deployment"""
deployment_name = data['deployment']['name']
endpoint_url = data['deployment']['endpoint_url']
print(f"✅ Deployment {deployment_name} is ready!")
print(f" Endpoint: {endpoint_url}")
# Update deployment status in your system
update_deployment_status(deployment_name, 'ready', endpoint_url)
# Run smoke tests
run_deployment_tests(deployment_name)
# Notify team via Slack
send_slack_notification(
channel="#ai-deployments",
message=f"🚀 Deployment `{deployment_name}` is ready for production use!",
color="good"
)
def handle_deployment_failed(data):
"""Handle failed deployment"""
deployment_name = data['deployment']['name']
error_message = data['error']['message']
error_code = data['error']['code']
print(f"❌ Deployment {deployment_name} failed!")
print(f" Error: {error_message} (Code: {error_code})")
# Update status and trigger alerts
update_deployment_status(deployment_name, 'failed', None)
# Create incident ticket
create_incident_ticket(
title=f"Deployment Failed: {deployment_name}",
description=f"Error: {error_message}\nCode: {error_code}",
priority="high"
)
# Send alert to oncall
send_pagerduty_alert(
summary=f"AICortex deployment failed: {deployment_name}",
severity="error",
details={
"deployment": deployment_name,
"error": error_message,
"error_code": error_code
}
)
def handle_training_completed(data):
"""Handle completed training job"""
job_id = data['training_job']['id']
job_name = data['training_job']['name']
metrics = data['training_job']['final_metrics']
model_id = data['model']['id']
print(f"🎉 Training job {job_name} completed!")
print(f" Final accuracy: {metrics['accuracy']:.2%}")
print(f" Model ID: {model_id}")
# Check if model meets quality threshold
if metrics['accuracy'] >= 0.90:
# Automatically deploy high-quality models
auto_deploy_model(model_id, f"auto-{job_name}-{datetime.now().strftime('%Y%m%d')}")
send_slack_notification(
channel="#ai-training",
message=f"🏆 Training job `{job_name}` achieved {metrics['accuracy']:.1%} accuracy! Auto-deploying...",
color="good"
)
else:
send_slack_notification(
channel="#ai-training",
message=f"⚠️ Training job `{job_name}` completed with {metrics['accuracy']:.1%} accuracy (below 90% threshold)",
color="warning"
)
def handle_billing_alert(data):
"""Handle billing threshold alerts"""
current_usage = data['usage']['current']
threshold = data['usage']['threshold']
percentage = data['usage']['percentage']
print(f"💰 Billing alert: {percentage:.1%} of budget used")
print(f" Current: ${current_usage:.2f} / ${threshold:.2f}")
# Send budget alert
send_email_alert(
recipients=["finance@company.com", "ai-team@company.com"],
subject=f"AICortex Budget Alert: {percentage:.0%} Used",
body=f"""
Your AICortex usage has reached {percentage:.1%} of the monthly budget.
Current Usage: ${current_usage:.2f}
Budget Limit: ${threshold:.2f}
Remaining: ${threshold - current_usage:.2f}
Please review your usage and optimize as needed.
"""
)
# If over 90%, take automated actions
if percentage >= 0.90:
# Scale down non-critical deployments
scale_down_dev_deployments()
# Send urgent alert
send_pagerduty_alert(
summary=f"AICortex budget 90% exceeded",
severity="warning",
details={"usage": current_usage, "budget": threshold}
)
def send_slack_notification(channel, message, color="gray"):
"""Send notification to Slack"""
webhook_url = os.getenv('SLACK_WEBHOOK_URL')
if not webhook_url:
return
payload = {
"channel": channel,
"attachments": [{
"color": color,
"text": message,
"ts": datetime.now().timestamp()
}]
}
requests.post(webhook_url, json=payload)
def auto_deploy_model(model_id, deployment_name):
"""Automatically deploy a high-quality model"""
try:
deployment = client.models.deploy(
model_id=model_id,
name=deployment_name,
config={
"instance_type": "gpu.small",
"auto_scaling": {"min_instances": 1, "max_instances": 3}
}
)
print(f"Auto-deployment started: {deployment.id}")
except Exception as e:
print(f"Auto-deployment failed: {e}")
# List all webhooks
webhooks = client.webhooks.list()
for webhook in webhooks:
print(f"Webhook {webhook.id}: {webhook.url}")
print(f" Events: {', '.join(webhook.events)}")
print(f" Active: {webhook.active}")
print(f" Success rate: {webhook.success_rate:.1%}")
# Get webhook delivery logs
deliveries = client.webhooks.get_deliveries(webhook_id, limit=50)
for delivery in deliveries:
print(f"[{delivery.timestamp}] {delivery.event_type}")
print(f" Status: {delivery.status_code} - {delivery.status}")
print(f" Response time: {delivery.response_time}ms")
# Retry failed deliveries
failed_deliveries = [d for d in deliveries if d.status != 'success']
for delivery in failed_deliveries:
retry_result = client.webhooks.retry_delivery(delivery.id)
print(f"Retried delivery {delivery.id}: {retry_result.status}")
# Pause webhook temporarily
client.webhooks.pause(webhook_id)
print("Webhook paused")
# Resume webhook
client.webhooks.resume(webhook_id)
print("Webhook resumed")
# Delete webhook
client.webhooks.delete(webhook_id)
print("Webhook deleted")
The Auth Module provides enterprise-grade authentication and authorization capabilities with role-based access control (RBAC), single sign-on (SSO) integration, and comprehensive audit logging.
AICortex implements a hierarchical permission system with three main user roles:
Standard access for developers and data scientists
Team management and resource oversight
Full platform control and infrastructure management
Seamlessly integrate with your existing identity providers:
Provider | Protocol | Features | Enterprise |
---|---|---|---|
Azure AD | SAML 2.0 / OAuth 2.0 | Groups, conditional access | ✅ |
Google Workspace | OAuth 2.0 / OpenID | Domain verification, groups | ✅ |
Okta | SAML 2.0 | Advanced MFA, lifecycle management | ✅ |
Active Directory | LDAP | On-premises integration | ✅ |
# Configure SSO settings
client.auth.configure_sso({
"provider": "azure_ad",
"domain": "yourcompany.com",
"client_id": "your_azure_client_id",
"tenant_id": "your_azure_tenant_id",
"auto_provision": True,
"default_role": "user",
"group_mappings": {
"ai-team": "admin",
"data-scientists": "user"
}
})
# Test SSO configuration
test_result = client.auth.test_sso_config()
print(f"SSO Test: {test_result.status}")
Comprehensive logging of all authentication and authorization events:
Retrieve authentication and authorization audit logs.
# Get audit logs
logs = client.auth.get_audit_logs(
start_date="2024-01-01",
end_date="2024-01-31",
event_types=["login", "permission_change", "api_key_created"]
)
for log in logs:
print(f"{log.timestamp}: {log.user_email} - {log.event_type}")
print(f" IP: {log.ip_address}, Status: {log.status}")
The Instance Management service provides serverless GPU orchestration with automatic scaling, multi-cloud support, and real-time monitoring of compute resources.
Choose from a variety of GPU instances optimized for different AI workloads:
Instance Type | GPU | VRAM | vCPU | RAM | Best For | $/hour |
---|---|---|---|---|---|---|
gpu.nano |
T4 | 16 GB | 4 | 16 GB | Small models, inference | $0.30 |
gpu.small |
T4 | 16 GB | 8 | 32 GB | Image classification, NLP | $0.50 |
gpu.medium |
V100 | 32 GB | 8 | 64 GB | Training, large models | $1.20 |
gpu.large |
A100 | 80 GB | 16 | 128 GB | LLMs, distributed training | $3.00 |
gpu.xlarge |
H100 | 80 GB | 32 | 256 GB | Large scale training | $8.00 |
Programmatically manage your GPU instances with start, stop, restart, and monitoring operations:
# Create and start a new GPU instance
instance = client.instances.create(
name="training-instance-1",
instance_type="gpu.medium",
region="us-west-2",
config={
"auto_shutdown": "1h", # Auto-shutdown after 1 hour of inactivity
"max_runtime": "24h", # Maximum runtime limit
"storage_size": "100GB"
}
)
print(f"Instance created: {instance.id}")
print(f"Status: {instance.status}")
# Wait for instance to be ready
instance.wait_until_ready(timeout=300)
print(f"Instance ready! Endpoint: {instance.ssh_endpoint}")
# Monitor instance metrics
metrics = client.instances.get_metrics(instance.id, period="5m")
print(f"GPU Utilization: {metrics.gpu_utilization}%")
print(f"Memory Usage: {metrics.memory_usage}%")
# Stop the instance
instance.stop()
print("Instance stopped")
# List all instances
instances = client.instances.list()
for inst in instances:
print(f"{inst.name}: {inst.status} ({inst.instance_type})")
# Create instance
curl -X POST https://api.aicortex.in/v1/instances \
-H "Authorization: Bearer $AICORTEX_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"name": "training-instance-1",
"instance_type": "gpu.medium",
"region": "us-west-2",
"config": {
"auto_shutdown": "1h",
"max_runtime": "24h"
}
}'
# Start instance
curl -X POST https://api.aicortex.in/v1/instances/inst_123/start \
-H "Authorization: Bearer $AICORTEX_API_KEY"
# Stop instance
curl -X POST https://api.aicortex.in/v1/instances/inst_123/stop \
-H "Authorization: Bearer $AICORTEX_API_KEY"
# Get instance status
curl -H "Authorization: Bearer $AICORTEX_API_KEY" \
https://api.aicortex.in/v1/instances/inst_123
Configure automatic scaling policies to optimize cost and performance:
# Configure auto-scaling for a deployment
scaling_config = {
"min_instances": 1,
"max_instances": 10,
"target_metrics": {
"gpu_utilization": 70,
"queue_depth": 5,
"response_time": "2s"
},
"scale_up_policy": {
"cooldown": "2m",
"step_size": 2
},
"scale_down_policy": {
"cooldown": "5m",
"step_size": 1
}
}
client.instances.configure_autoscaling("my-deployment", scaling_config)
# Monitor scaling events
events = client.instances.get_scaling_events("my-deployment")
for event in events:
print(f"{event.timestamp}: {event.action} - {event.reason}")
The Data Input Streams service provides multi-source data ingestion capabilities, supporting real-time streaming, batch processing, and integration with popular data platforms.
Connect to various data sources with built-in connectors and APIs:
Object storage with versioning and lifecycle management.
StableDirect integration with Google Drive files and folders.
StableReal-time streaming data processing and ingestion.
StablePinecone, Weaviate, and Qdrant integration for embeddings.
BetaREST API connectors with authentication and rate limiting.
StablePostgreSQL, MySQL, MongoDB, and Snowflake connections.
StableConfigure data streams with transformation, filtering, and routing capabilities:
# Configure S3 data stream
s3_stream = client.data_streams.create({
"name": "s3-training-data",
"type": "s3",
"config": {
"bucket": "my-training-bucket",
"prefix": "datasets/images/",
"region": "us-west-2",
"file_pattern": "*.jpg",
"batch_size": 100,
"polling_interval": "5m"
},
"transformations": [
{
"type": "resize_image",
"params": {"width": 224, "height": 224}
},
{
"type": "normalize",
"params": {"mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225]}
}
],
"output": {
"format": "pytorch_dataset",
"destination": "training_pipeline"
}
})
# Monitor stream status
status = client.data_streams.get_status("s3-training-data")
print(f"Processed: {status.files_processed}")
print(f"Errors: {status.error_count}")
# Configure Kafka streaming data
kafka_stream = client.data_streams.create({
"name": "real-time-inference",
"type": "kafka",
"config": {
"bootstrap_servers": ["kafka1:9092", "kafka2:9092"],
"topic": "inference_requests",
"consumer_group": "aicortex_group",
"auto_offset_reset": "latest",
"security_protocol": "SASL_SSL",
"sasl_mechanism": "PLAIN",
"sasl_username": "your_username",
"sasl_password": "your_password"
},
"transformations": [
{
"type": "json_parse",
"params": {"schema": "inference_schema"}
},
{
"type": "validate",
"params": {"required_fields": ["image_url", "model_id"]}
}
],
"output": {
"destination": "inference_pipeline",
"response_topic": "inference_results"
}
})
# Process streaming data
def process_stream_message(message):
result = client.models.predict(
deployment_name=message["model_id"],
inputs={"image": message["image_url"]}
)
return {"prediction": result.predictions[0].label, "confidence": result.predictions[0].confidence}
client.data_streams.start_processor("real-time-inference", process_stream_message)
# Configure custom API data stream
api_stream = client.data_streams.create({
"name": "external-api-data",
"type": "api",
"config": {
"url": "https://api.example.com/data",
"method": "GET",
"headers": {
"Authorization": "Bearer your_api_token",
"Content-Type": "application/json"
},
"pagination": {
"type": "offset",
"limit_param": "limit",
"offset_param": "offset",
"page_size": 100
},
"rate_limit": {
"requests_per_second": 10,
"burst_size": 50
},
"schedule": "0 */6 * * *" # Every 6 hours
},
"transformations": [
{
"type": "extract_fields",
"params": {"fields": ["id", "text", "timestamp", "labels"]}
},
{
"type": "filter",
"params": {"condition": "timestamp > yesterday"}
}
]
})
# Manual trigger for API stream
result = client.data_streams.trigger("external-api-data")
print(f"Fetched {result.records_count} records")
Built-in data governance features ensure compliance and security:
ZeroCore is an intelligent development platform that provides a secure Python sandbox environment with guided workflows, pre-approved modules, and integrated development tools.
ZeroCore runs in a restricted execution environment designed for security and collaboration:
Access to curated Python packages optimized for AI development:
Category | Packages | Description |
---|---|---|
ML Frameworks | torch, tensorflow, jax, scikit-learn | Core machine learning libraries |
Data Processing | pandas, numpy, polars, dask | Data manipulation and analysis |
Visualization | matplotlib, seaborn, plotly, altair | Charts and data visualization |
Computer Vision | opencv, pillow, torchvision, albumentations | Image processing and augmentation |
NLP | transformers, spacy, nltk, tokenizers | Natural language processing |
Interactive development environment with enhanced capabilities:
# ZeroCore notebook with AICortex integration
import aicortex.zerocore as zc
# Access data streams directly in notebook
data = zc.load_stream("training-data-stream")
print(f"Loaded {len(data)} samples")
# Use pre-trained models
model = zc.load_model("resnet50-imagenet")
predictions = model.predict(data[:10])
# Visualize results with automatic plotting
zc.plot.confusion_matrix(predictions, labels)
zc.plot.feature_importance(model, data.columns)
# Save work to Model Hub
zc.save_notebook("image-classifier-experiment-v1")
# Deploy directly from notebook
deployment = zc.deploy_model(
model=model,
name="notebook-classifier",
instance_type="gpu.small"
)
print(f"Model deployed: {deployment.endpoint_url}")
Organized file system with version control and collaboration features:
# File management in ZeroCore
import aicortex.zerocore.files as zcf
# Upload files
zcf.upload("local_dataset.csv", "datasets/experiment_1/")
# List files in workspace
files = zcf.list("datasets/")
for file in files:
print(f"{file.name} ({file.size} bytes) - {file.modified}")
# Create shareable links
link = zcf.create_share_link("models/trained_model.pkl", expires="7d")
print(f"Share link: {link.url}")
# Version control
zcf.commit("datasets/processed_data.csv", message="Added feature engineering")
versions = zcf.get_versions("datasets/processed_data.csv")
# Collaborate with team
zcf.share_workspace("ai-team", permissions=["read", "write"])
# ZeroCore CLI commands (available in notebook terminal)
# List files
!zcf ls /workspace/datasets/
# Upload file
!zcf upload local_file.csv /workspace/data/
# Download file
!zcf download /workspace/models/model.pkl ./
# Sync with external storage
!zcf sync s3://my-bucket/data/ /workspace/datasets/
# Create checkpoint
!zcf checkpoint create "experiment_v1"
# Restore from checkpoint
!zcf checkpoint restore "experiment_v1"
Publish your notebook code as REST API endpoints:
# Create API endpoint from notebook function
@zc.api_endpoint(
method="POST",
path="/predict-sentiment",
description="Analyze sentiment of input text"
)
def analyze_sentiment(text: str) -> dict:
"""Analyze sentiment using pre-trained model"""
model = zc.load_model("sentiment-analyzer")
result = model.predict(text)
return {
"text": text,
"sentiment": result.label,
"confidence": result.confidence,
"timestamp": datetime.now().isoformat()
}
# Publish endpoint
endpoint = zc.publish_endpoint("analyze_sentiment")
print(f"API URL: {endpoint.url}")
# Test endpoint
response = requests.post(endpoint.url, json={"text": "I love this product!"})
print(response.json())
# Monitor endpoint usage
metrics = zc.get_endpoint_metrics("analyze_sentiment")
print(f"Requests today: {metrics.requests_count}")
print(f"Average latency: {metrics.avg_latency}ms")
Real-time collaboration and sharing capabilities:
The Model Hub is a comprehensive AI model registry that provides access to pre-trained models, custom model development, versioning, and automated deployment infrastructure.
Access hundreds of state-of-the-art models across different domains:
GPT, Claude, Llama, and specialized NLP models
• Text generation
• Question answering
• Code completion
• Translation
ResNet, YOLO, Stable Diffusion, and vision transformers
• Image classification
• Object detection
• Image generation
• Semantic segmentation
Whisper, Wav2Vec, and music generation models
• Speech recognition
• Audio classification
• Music generation
• Voice synthesis
Action recognition, video generation, and analysis
• Action recognition
• Video summarization
• Motion detection
• Scene understanding
Intelligent agents for automation and decision making
• Task automation
• Decision support
• Multi-modal reasoning
• Tool integration
Forecasting and anomaly detection models
• Sales forecasting
• Anomaly detection
• Demand planning
• Financial modeling
Find the right model for your use case with advanced search and filtering:
# Search models by category and requirements
models = client.model_hub.search(
categories=["computer_vision"],
tasks=["image_classification"],
frameworks=["pytorch"],
max_parameters=100_000_000, # Under 100M parameters
min_accuracy=0.85,
license="commercial"
)
for model in models:
print(f"{model.name} - {model.accuracy:.2%} accuracy")
print(f" Parameters: {model.parameters:,}")
print(f" Framework: {model.framework}")
print(f" License: {model.license}")
# Get model details
model_info = client.model_hub.get("resnet50-imagenet")
print(f"Description: {model_info.description}")
print(f"Input shape: {model_info.input_shape}")
print(f"Classes: {len(model_info.classes)}")
# Check model benchmarks
benchmarks = client.model_hub.get_benchmarks("resnet50-imagenet")
for benchmark in benchmarks:
print(f"Dataset: {benchmark.dataset}")
print(f"Accuracy: {benchmark.accuracy:.2%}")
print(f"Inference time: {benchmark.inference_time}ms")
Upload and manage your own models with full lifecycle support:
# Upload custom model to Model Hub
model = client.model_hub.upload(
name="custom-sentiment-classifier",
description="Fine-tuned BERT for product review sentiment",
model_files={
"model.bin": "path/to/model.bin",
"config.json": "path/to/config.json",
"tokenizer.json": "path/to/tokenizer.json"
},
inference_code="inference.py",
requirements="requirements.txt",
metadata={
"framework": "transformers",
"base_model": "bert-base-uncased",
"task": "text_classification",
"dataset": "product_reviews",
"accuracy": 0.92,
"license": "mit"
},
example_input={
"text": "This product is amazing!"
},
example_output={
"sentiment": "positive",
"confidence": 0.95
}
)
print(f"Model uploaded: {model.id}")
print(f"Version: {model.version}")
# Test uploaded model
test_result = client.model_hub.test(
model_id=model.id,
inputs={"text": "I love this product!"}
)
print(f"Test result: {test_result}")
# Train custom model using CortexFlow
training_job = client.model_hub.train(
name="custom-image-classifier",
base_model="resnet18",
dataset="my-training-dataset",
training_config={
"epochs": 50,
"batch_size": 32,
"learning_rate": 0.001,
"optimizer": "adam",
"loss_function": "cross_entropy",
"early_stopping": {
"patience": 10,
"metric": "val_accuracy"
}
},
compute_config={
"instance_type": "gpu.medium",
"num_instances": 2,
"distributed": True
},
hyperparameter_tuning={
"method": "bayesian",
"max_trials": 20,
"parameters": {
"learning_rate": {"min": 0.0001, "max": 0.01},
"batch_size": {"choices": [16, 32, 64]},
"dropout": {"min": 0.1, "max": 0.5}
}
}
)
print(f"Training job started: {training_job.id}")
# Monitor training progress
while training_job.status in ["running", "pending"]:
metrics = training_job.get_metrics()
print(f"Epoch {metrics.epoch}: Loss={metrics.loss:.4f}, Accuracy={metrics.accuracy:.2%}")
time.sleep(30)
# Get best model from training
if training_job.status == "completed":
best_model = training_job.get_best_model()
print(f"Best model accuracy: {best_model.accuracy:.2%}")
# Save to Model Hub
model_id = client.model_hub.save(best_model, name="custom-classifier-v1")
print(f"Model saved: {model_id}")
Complete lifecycle management with versioning, rollbacks, and A/B testing:
# Create new model version
new_version = client.model_hub.create_version(
model_id="custom-classifier",
version="2.0.0",
model_files={"model.bin": "updated_model.bin"},
changelog="Improved accuracy by 3% with additional training data",
tags=["production", "improved"]
)
# List all versions
versions = client.model_hub.list_versions("custom-classifier")
for version in versions:
print(f"v{version.version} - {version.created_at} - {version.status}")
# Deploy specific version
deployment = client.models.deploy(
model_id="custom-classifier:1.5.0", # Deploy specific version
name="classifier-stable"
)
# A/B test between versions
client.deployments.setup_ab_test(
name="classifier-ab-test",
variants={
"version_1": {"model": "custom-classifier:1.5.0", "traffic": 50},
"version_2": {"model": "custom-classifier:2.0.0", "traffic": 50}
},
metrics=["accuracy", "latency", "user_satisfaction"]
)
# Monitor A/B test results
ab_results = client.deployments.get_ab_results("classifier-ab-test")
print(f"Version 1 accuracy: {ab_results.variants['version_1'].accuracy:.2%}")
print(f"Version 2 accuracy: {ab_results.variants['version_2'].accuracy:.2%}")
CortexFlow is an advanced ML pipeline automation platform that provides distributed training, automated hyperparameter optimization, and seamless integration with the broader AICortex ecosystem.
CortexFlow supports various training paradigms and optimization techniques:
Scale your training across multiple GPUs and nodes for faster convergence:
# Configure distributed training job
training_job = client.cortexflow.create_training_job({
"name": "large-model-training",
"model_config": {
"architecture": "transformer",
"layers": 24,
"hidden_size": 1024,
"attention_heads": 16,
"vocab_size": 50000
},
"data_config": {
"training_data": "s3://my-bucket/training-data/",
"validation_data": "s3://my-bucket/validation-data/",
"batch_size": 32,
"sequence_length": 512
},
"distributed_config": {
"strategy": "data_parallel", # or "model_parallel", "pipeline_parallel"
"num_nodes": 4,
"gpus_per_node": 8,
"communication_backend": "nccl"
},
"training_config": {
"optimizer": "adamw",
"learning_rate": 1e-4,
"warmup_steps": 1000,
"max_steps": 100000,
"gradient_accumulation_steps": 4,
"mixed_precision": True
}
})
print(f"Training job created: {training_job.id}")
# Monitor distributed training
while training_job.status == "running":
metrics = training_job.get_metrics()
print(f"Step {metrics.step}: Loss={metrics.loss:.4f}")
print(f" GPU Utilization: {metrics.gpu_utilization:.1f}%")
print(f" Throughput: {metrics.samples_per_second:.1f} samples/sec")
time.sleep(60)
Automated hyperparameter tuning with multiple optimization strategies:
# Bayesian hyperparameter optimization
hpo_job = client.cortexflow.create_hpo_job({
"name": "model-optimization",
"optimization_method": "bayesian",
"objective": {
"metric": "validation_accuracy",
"direction": "maximize"
},
"search_space": {
"learning_rate": {
"type": "float",
"min": 1e-5,
"max": 1e-2,
"scale": "log"
},
"batch_size": {
"type": "categorical",
"choices": [16, 32, 64, 128]
},
"hidden_layers": {
"type": "int",
"min": 2,
"max": 10
},
"dropout_rate": {
"type": "float",
"min": 0.1,
"max": 0.5
},
"optimizer": {
"type": "categorical",
"choices": ["adam", "adamw", "sgd", "rmsprop"]
}
},
"budget": {
"max_trials": 50,
"max_runtime": "12h",
"early_stopping": {
"min_trials": 10,
"patience": 5
}
},
"acquisition_function": "expected_improvement",
"initial_points": 5
})
# Monitor optimization progress
best_trial = None
for trial in hpo_job.stream_trials():
print(f"Trial {trial.number}: {trial.params}")
print(f" Result: {trial.metric_value:.4f}")
if best_trial is None or trial.metric_value > best_trial.metric_value:
best_trial = trial
print(f" New best! 🎉")
print(f"Best configuration: {best_trial.params}")
print(f"Best score: {best_trial.metric_value:.4f}")
# Grid search hyperparameter optimization
grid_search = client.cortexflow.create_hpo_job({
"name": "comprehensive-grid-search",
"optimization_method": "grid_search",
"search_space": {
"learning_rate": [0.001, 0.01, 0.1],
"batch_size": [32, 64, 128],
"hidden_size": [256, 512, 1024],
"num_layers": [3, 4, 5]
},
"parallel_trials": 8, # Run 8 trials in parallel
"resource_per_trial": {
"instance_type": "gpu.small",
"max_runtime": "2h"
}
})
# Get comprehensive results
results = grid_search.get_results()
results_df = results.to_dataframe()
# Analyze results
best_config = results_df.loc[results_df['metric'].idxmax()]
print(f"Best configuration:")
for param, value in best_config.items():
if param != 'metric':
print(f" {param}: {value}")
print(f"Best metric: {best_config['metric']:.4f}")
# Visualize parameter importance
import matplotlib.pyplot as plt
client.cortexflow.plot_parameter_importance(grid_search.id)
plt.show()
# Random search with early stopping
random_search = client.cortexflow.create_hpo_job({
"name": "random-search-exploration",
"optimization_method": "random_search",
"search_space": {
"learning_rate": {
"distribution": "log_uniform",
"min": 1e-5,
"max": 1e-1
},
"batch_size": {
"distribution": "choice",
"choices": [8, 16, 32, 64, 128, 256]
},
"weight_decay": {
"distribution": "uniform",
"min": 0.0,
"max": 0.1
}
},
"budget": {
"max_trials": 100,
"max_runtime": "8h"
},
"early_stopping": {
"metric": "validation_loss",
"min_delta": 0.001,
"patience": 3,
"warmup_trials": 10
}
})
# Stream results in real-time
for update in random_search.stream_updates():
if update.type == "trial_completed":
trial = update.trial
print(f"Trial {trial.number} completed")
print(f" Parameters: {trial.params}")
print(f" Score: {trial.metric_value:.4f}")
print(f" Runtime: {trial.runtime:.1f}s")
elif update.type == "early_stopped":
print(f"Trial {update.trial_number} stopped early")
CortexFlow exposes powerful APIs for forward, backward, and prediction operations:
Execute forward pass through the neural network.
# Forward pass API
result = client.cortexflow.forward(
model_id="training-model-123",
inputs={
"input_ids": [[101, 2023, 2003, 2143, 102]], # Tokenized text
"attention_mask": [[1, 1, 1, 1, 1]]
},
return_gradients=True,
return_attention=True
)
print(f"Output shape: {result.outputs.shape}")
print(f"Loss: {result.loss:.4f}")
if result.gradients:
print(f"Gradient norm: {result.gradient_norm:.6f}")
Execute backward pass and update model parameters.
# Backward pass API
update_result = client.cortexflow.backward(
model_id="training-model-123",
loss_value=2.341,
gradients=computed_gradients,
optimizer_config={
"type": "adam",
"learning_rate": 1e-4,
"weight_decay": 0.01
}
)
print(f"Parameters updated: {update_result.parameters_updated}")
print(f"Learning rate: {update_result.current_lr}")
print(f"Gradient norm: {update_result.gradient_norm:.6f}")
Real-time monitoring of training metrics and model performance:
# Set up real-time monitoring
monitor = client.cortexflow.create_monitor({
"training_job_id": "job_123",
"metrics": [
"loss", "accuracy", "learning_rate", "gradient_norm",
"gpu_utilization", "memory_usage", "throughput"
],
"alerts": [
{
"metric": "loss",
"condition": "not_decreasing",
"threshold": 10, # 10 epochs without improvement
"action": "email"
},
{
"metric": "gpu_utilization",
"condition": "below",
"threshold": 0.7, # GPU utilization below 70%
"action": "slack"
}
]
})
# Get real-time metrics
metrics_stream = client.cortexflow.stream_metrics("job_123")
for metric_update in metrics_stream:
print(f"Step {metric_update.step}:")
print(f" Loss: {metric_update.loss:.4f}")
print(f" Accuracy: {metric_update.accuracy:.2%}")
print(f" GPU: {metric_update.gpu_utilization:.1f}%")
# Custom logic based on metrics
if metric_update.loss > 10.0:
print(" ⚠️ High loss detected!")
client.cortexflow.pause_training("job_123")
break
CortexLogs provides comprehensive monitoring and observability for the entire AICortex platform with centralized logging, real-time analytics, alerting, and cost optimization insights.
Aggregate logs from all platform components in a unified interface:
Infrastructure, auth, and platform events
ML training progress and metrics
API requests and model predictions
Resource usage and billing insights
Advanced filtering capabilities to find exactly what you need:
# Query logs with advanced filtering
logs = client.cortexlogs.query({
"time_range": {
"start": "2024-01-20T00:00:00Z",
"end": "2024-01-20T23:59:59Z"
},
"services": ["cortexflow", "model_hub", "instances"],
"log_levels": ["ERROR", "WARN"],
"search_query": "GPU memory",
"filters": {
"user_id": "user_123",
"deployment_name": "production-classifier",
"instance_type": "gpu.medium"
},
"limit": 1000,
"sort": "timestamp_desc"
})
for log in logs:
print(f"[{log.timestamp}] {log.service}.{log.level}: {log.message}")
if log.metadata:
print(f" Metadata: {log.metadata}")
# Search specific error patterns
error_logs = client.cortexlogs.search(
query="ERROR AND (timeout OR connection)",
time_range="last_24h",
group_by="service"
)
for service, errors in error_logs.items():
print(f"{service}: {len(errors)} errors")
# Get log statistics
stats = client.cortexlogs.get_statistics(
time_range="last_week",
group_by=["service", "log_level"]
)
print("Log volume by service:")
for service, data in stats.items():
print(f" {service}: {data.total_logs} logs, {data.error_rate:.1%} error rate")
Customizable dashboards for monitoring system health and performance:
# Create custom monitoring dashboard
dashboard = client.cortexlogs.create_dashboard({
"name": "Production AI Pipeline",
"description": "Monitor production deployments and training jobs",
"layout": "grid",
"widgets": [
{
"type": "metric_chart",
"title": "API Response Times",
"position": {"x": 0, "y": 0, "width": 6, "height": 4},
"config": {
"metric": "api_response_time",
"aggregation": "avg",
"time_range": "1h",
"group_by": "deployment_name"
}
},
{
"type": "log_count",
"title": "Error Rate",
"position": {"x": 6, "y": 0, "width": 6, "height": 4},
"config": {
"query": "level:ERROR",
"time_range": "1h",
"alert_threshold": 100
}
},
{
"type": "gauge",
"title": "GPU Utilization",
"position": {"x": 0, "y": 4, "width": 4, "height": 3},
"config": {
"metric": "gpu_utilization",
"aggregation": "avg",
"min": 0,
"max": 100,
"thresholds": [
{"value": 70, "color": "green"},
{"value": 90, "color": "yellow"},
{"value": 95, "color": "red"}
]
}
},
{
"type": "table",
"title": "Active Deployments",
"position": {"x": 4, "y": 4, "width": 8, "height": 3},
"config": {
"query": "service:model_hub AND event:deployment_status",
"columns": ["deployment_name", "status", "instances", "requests_per_minute"],
"sort": "requests_per_minute_desc"
}
}
],
"refresh_interval": "30s",
"shared_with": ["team:ai-ops", "team:data-science"]
})
print(f"Dashboard created: {dashboard.url}")
# Update dashboard widget
client.cortexlogs.update_widget(dashboard.id, "widget_123", {
"config": {
"time_range": "24h", # Extend time range
"alert_threshold": 50 # Lower alert threshold
}
})
# Available widget types and configurations
# 1. Time Series Chart
time_series_widget = {
"type": "time_series",
"config": {
"metrics": [
{
"name": "cpu_utilization",
"label": "CPU %",
"color": "#FF6B35"
},
{
"name": "memory_utilization",
"label": "Memory %",
"color": "#36A2EB"
}
],
"time_range": "4h",
"interval": "5m",
"y_axis": {"min": 0, "max": 100}
}
}
# 2. Heatmap
heatmap_widget = {
"type": "heatmap",
"config": {
"metric": "request_latency",
"x_axis": "time",
"y_axis": "deployment_name",
"aggregation": "p95",
"color_scheme": "RdYlBu"
}
}
# 3. Single Stat
single_stat_widget = {
"type": "single_stat",
"config": {
"metric": "total_requests",
"aggregation": "sum",
"time_range": "1h",
"format": "number",
"sparkline": True,
"thresholds": [
{"value": 1000, "color": "green"},
{"value": 500, "color": "yellow"},
{"value": 100, "color": "red"}
]
}
}
# 4. Log Stream
log_stream_widget = {
"type": "log_stream",
"config": {
"query": "level:ERROR OR level:WARN",
"max_lines": 100,
"auto_refresh": True,
"highlight_patterns": ["timeout", "error", "failed"]
}
}
# Add widgets to dashboard
for widget_config in [time_series_widget, heatmap_widget, single_stat_widget, log_stream_widget]:
client.cortexlogs.add_widget(dashboard.id, widget_config)
Proactive monitoring with intelligent alerts and multi-channel notifications:
# Configure comprehensive alerting
alert_rules = [
{
"name": "High Error Rate",
"description": "Alert when error rate exceeds threshold",
"query": "level:ERROR",
"condition": {
"type": "threshold",
"operator": "greater_than",
"value": 50, # 50 errors
"time_window": "5m",
"evaluation_interval": "1m"
},
"notifications": [
{
"type": "email",
"recipients": ["admin@company.com", "oncall@company.com"]
},
{
"type": "slack",
"channel": "#ai-alerts",
"mention": "@channel"
}
],
"severity": "critical"
},
{
"name": "GPU Utilization Low",
"description": "Alert when GPU utilization is consistently low",
"query": "metric:gpu_utilization",
"condition": {
"type": "threshold",
"operator": "less_than",
"value": 30, # 30% utilization
"time_window": "15m",
"evaluation_interval": "5m"
},
"notifications": [
{
"type": "webhook",
"url": "https://hooks.company.com/cost-optimization",
"headers": {"Authorization": "Bearer token"}
}
],
"severity": "warning"
},
{
"name": "Training Job Stalled",
"description": "Alert when training loss stops decreasing",
"query": "service:cortexflow AND event:training_metrics",
"condition": {
"type": "anomaly",
"metric": "training_loss",
"algorithm": "isolation_forest",
"sensitivity": "medium",
"time_window": "30m"
},
"notifications": [
{
"type": "pagerduty",
"integration_key": "your_pagerduty_key",
"severity": "error"
}
],
"severity": "high"
}
]
# Create alert rules
for rule in alert_rules:
alert = client.cortexlogs.create_alert_rule(rule)
print(f"Alert rule created: {alert.id}")
# Test alert rule
test_result = client.cortexlogs.test_alert_rule(alert.id)
print(f"Alert test: {test_result.status}")
if test_result.would_trigger:
print(f"Alert would trigger with current data")
# Get alert history
alert_history = client.cortexlogs.get_alert_history(
time_range="last_week",
severity=["critical", "high"]
)
for alert_event in alert_history:
print(f"[{alert_event.timestamp}] {alert_event.rule_name}")
print(f" Status: {alert_event.status}")
print(f" Duration: {alert_event.duration}")
Detailed cost tracking with optimization recommendations:
# Get detailed cost analytics
cost_analysis = client.cortexlogs.get_cost_analytics({
"time_range": "last_month",
"group_by": ["service", "instance_type", "user"],
"include_recommendations": True
})
print("Cost breakdown by service:")
for service, cost_data in cost_analysis.by_service.items():
print(f" {service}: ${cost_data.total:.2f}")
print(f" GPU hours: {cost_data.gpu_hours:.1f}")
print(f" Storage: ${cost_data.storage_cost:.2f}")
print(f" API calls: {cost_data.api_calls:,}")
print("\nTop cost drivers:")
for driver in cost_analysis.top_drivers:
print(f" {driver.resource}: ${driver.cost:.2f} ({driver.percentage:.1f}%)")
print("\nOptimization recommendations:")
for rec in cost_analysis.recommendations:
print(f" 💡 {rec.title}")
print(f" {rec.description}")
print(f" Potential savings: ${rec.estimated_savings:.2f}/month")
if rec.type == "right_sizing":
print(f" Suggested instance: {rec.suggested_instance_type}")
elif rec.type == "auto_scaling":
print(f" Suggested config: {rec.scaling_config}")
# Set up cost alerts
cost_alert = client.cortexlogs.create_cost_alert({
"name": "Monthly Budget Alert",
"budget": 5000, # $5000/month
"alert_thresholds": [50, 80, 90, 100], # Alert at 50%, 80%, 90%, 100%
"scope": {
"services": ["cortexflow", "model_hub"],
"users": ["team:data-science"]
},
"notifications": [
{"type": "email", "recipients": ["finance@company.com"]},
{"type": "slack", "channel": "#budget-alerts"}
]
})
# Get real-time cost tracking
current_spend = client.cortexlogs.get_current_spend()
print(f"Current month spend: ${current_spend.total:.2f}")
print(f"Projected month-end: ${current_spend.projected:.2f}")
print(f"Budget utilization: {current_spend.budget_utilization:.1%}")
Learn how to deploy and manage AI models on the AICortex platform with advanced configuration options, scaling strategies, and best practices.
AICortex supports three types of model deployments:
Deploy pre-trained models from Model Hub with minimal configuration.
Deploy with custom configurations, scaling policies, and environment settings.
Deploy your own models with custom inference code and dependencies.
Choose the right compute instance for your model's requirements:
Instance Type | CPU | Memory | GPU | Best For | Price/Hour |
---|---|---|---|---|---|
cpu.small |
2 vCPU | 4 GB | - | Simple text models | $0.05 |
cpu.medium |
4 vCPU | 8 GB | - | NLP, small models | $0.10 |
gpu.small |
4 vCPU | 16 GB | T4 (16GB) | Image classification | $0.50 |
gpu.medium |
8 vCPU | 32 GB | V100 (32GB) | Large language models | $1.20 |
gpu.large |
16 vCPU | 64 GB | A100 (80GB) | Very large models | $3.00 |
Configure automatic scaling to handle varying traffic loads efficiently:
{
"auto_scaling": {
"min_instances": 1,
"max_instances": 20,
"target_utilization": 70,
"scale_up_cooldown": "2m",
"scale_down_cooldown": "5m",
"metrics": {
"cpu_utilization": {
"target": 70,
"weight": 0.3
},
"memory_utilization": {
"target": 80,
"weight": 0.2
},
"request_rate": {
"target": 100,
"weight": 0.5
}
}
}
}
AICortex automatically monitors your deployments and provides health checks:
{
"health_check": {
"enabled": true,
"endpoint": "/health",
"interval": "30s",
"timeout": "10s",
"unhealthy_threshold": 3,
"healthy_threshold": 2
},
"monitoring": {
"metrics_enabled": true,
"log_level": "INFO",
"alerts": {
"high_error_rate": {
"threshold": 5,
"window": "5m"
},
"high_latency": {
"threshold": "2s",
"window": "5m"
}
}
}
}
Deploy new versions with zero downtime using blue-green deployment:
# Deploy new version (green)
new_deployment = client.models.deploy(
model_id="my-model:v2.0",
name="my-model-green",
config={"instance_type": "gpu.medium"}
)
# Wait for deployment to be ready
new_deployment.wait_until_ready()
# Test the new deployment
test_result = client.models.predict(
deployment_name="my-model-green",
inputs=test_data
)
# If tests pass, switch traffic
client.deployments.switch_traffic(
from_deployment="my-model-blue",
to_deployment="my-model-green",
percentage=100
)
# Clean up old deployment
client.deployments.delete("my-model-blue")
Gradually roll out new versions to a subset of traffic:
# Deploy canary version
canary_deployment = client.models.deploy(
model_id="my-model:v2.0",
name="my-model-canary",
config={"instance_type": "gpu.medium"}
)
# Route 10% of traffic to canary
client.deployments.set_traffic_split({
"my-model-production": 90,
"my-model-canary": 10
})
# Monitor metrics and gradually increase
import time
time.sleep(300) # Wait 5 minutes
# If metrics look good, increase to 50%
client.deployments.set_traffic_split({
"my-model-production": 50,
"my-model-canary": 50
})
# Eventually promote canary to production
client.deployments.promote_canary("my-model-canary")
Learn how to seamlessly integrate your data sources with AICortex, from simple file uploads to complex streaming pipelines and real-time data processing.
For training data and periodic model updates:
# S3 batch processing with automatic triggering
s3_config = {
"bucket": "ml-training-data",
"prefix": "datasets/images/",
"trigger": {
"type": "s3_event", # Trigger on new files
"events": ["s3:ObjectCreated:*"]
},
"processing": {
"batch_size": 1000,
"format": "pytorch_dataset",
"transformations": [
{"type": "resize", "params": {"size": [224, 224]}},
{"type": "normalize", "params": {"mean": [0.485, 0.456, 0.406]}},
{"type": "augment", "params": {"rotation": 15, "flip": True}}
]
}
}
# Create data pipeline
pipeline = client.data_streams.create_pipeline({
"name": "image-training-pipeline",
"source": {"type": "s3", "config": s3_config},
"destination": {"type": "cortexflow", "target": "training_job_123"},
"schedule": "0 2 * * *", # Daily at 2 AM
"validation": {
"schema": "image_dataset_schema",
"quality_checks": ["format", "size", "corruption"]
}
})
# Monitor pipeline execution
status = client.data_streams.get_pipeline_status(pipeline.id)
print(f"Pipeline status: {status.state}")
print(f"Last run: {status.last_execution}")
print(f"Files processed: {status.files_processed}")
For live inference and continuous learning:
# Kafka streaming for real-time inference
kafka_config = {
"bootstrap_servers": ["kafka1:9092", "kafka2:9092"],
"topics": ["user_events", "sensor_data"],
"consumer_group": "aicortex_inference",
"processing": {
"batch_size": 100,
"max_latency": "1s",
"format": "json",
"schema_registry": "http://schema-registry:8081"
},
"security": {
"protocol": "SASL_SSL",
"mechanism": "PLAIN",
"username": "kafka_user",
"password": "kafka_password"
}
}
# Create streaming pipeline
stream = client.data_streams.create_stream({
"name": "real-time-inference-stream",
"source": {"type": "kafka", "config": kafka_config},
"processors": [
{
"type": "filter",
"config": {"condition": "event_type == 'prediction_request'"}
},
{
"type": "enrich",
"config": {"user_lookup": "user_service_api"}
},
{
"type": "predict",
"config": {"deployment": "real-time-classifier"}
}
],
"output": {
"type": "kafka",
"topic": "prediction_results",
"format": "avro"
}
})
# Start stream processing
client.data_streams.start_stream(stream.id)
print(f"Stream {stream.name} started")
# Monitor stream health
metrics = client.data_streams.get_stream_metrics(stream.id)
print(f"Messages/sec: {metrics.throughput}")
print(f"Latency p99: {metrics.latency_p99}ms")
print(f"Error rate: {metrics.error_rate:.2%}")
Connect to various databases for training data and feature stores:
# PostgreSQL integration for training data
postgres_config = {
"host": "postgres.company.com",
"port": 5432,
"database": "ml_data",
"username": "ml_user",
"password": "secure_password",
"ssl_mode": "require",
"connection_pool": {
"min_connections": 5,
"max_connections": 20
}
}
# Create database connection
db_source = client.data_streams.create_source({
"name": "postgres-training-data",
"type": "postgresql",
"config": postgres_config
})
# Define data extraction query
extraction_config = {
"query": """
SELECT
customer_id,
feature_vector,
label,
created_at
FROM customer_features
WHERE created_at >= %s
AND label IS NOT NULL
ORDER BY created_at DESC
""",
"parameters": ["2024-01-01"],
"batch_size": 10000,
"incremental": {
"column": "created_at",
"strategy": "watermark"
}
}
# Extract and prepare training data
training_data = client.data_streams.extract({
"source": db_source.id,
"config": extraction_config,
"output_format": "parquet",
"destination": "s3://training-bucket/customer-features/"
})
print(f"Extracted {training_data.row_count} rows")
print(f"Output files: {training_data.output_files}")
# Schedule regular data extraction
client.data_streams.schedule_extraction({
"source": db_source.id,
"config": extraction_config,
"schedule": "0 1 * * *", # Daily at 1 AM
"notification": {
"on_success": ["data-team@company.com"],
"on_failure": ["oncall@company.com"]
}
})
# MongoDB integration for document data
mongo_config = {
"connection_string": "mongodb+srv://user:pass@cluster.mongodb.net/",
"database": "user_content",
"collection": "documents",
"authentication": {
"mechanism": "SCRAM-SHA-256",
"source": "admin"
},
"options": {
"read_preference": "secondaryPreferred",
"max_pool_size": 50
}
}
# Create MongoDB source
mongo_source = client.data_streams.create_source({
"name": "document-classification-data",
"type": "mongodb",
"config": mongo_config
})
# Extract documents for text classification
document_extraction = {
"filter": {
"status": "approved",
"language": "en",
"created_at": {"$gte": "2024-01-01"}
},
"projection": {
"title": 1,
"content": 1,
"category": 1,
"tags": 1,
"_id": 0
},
"transformations": [
{
"type": "text_preprocessing",
"config": {
"clean_html": True,
"normalize_whitespace": True,
"min_length": 100
}
},
{
"type": "feature_extraction",
"config": {
"method": "tfidf",
"max_features": 10000,
"ngram_range": [1, 2]
}
}
]
}
# Process documents in batches
document_data = client.data_streams.extract({
"source": mongo_source.id,
"config": document_extraction,
"batch_size": 5000,
"output_format": "jsonlines"
})
print(f"Processed {document_data.document_count} documents")
# Set up change stream for real-time updates
change_stream = client.data_streams.create_change_stream({
"source": mongo_source.id,
"watch_options": {
"full_document": "updateLookup",
"filter": {"operationType": {"$in": ["insert", "update"]}}
},
"processor": {
"type": "incremental_training",
"model": "document-classifier",
"batch_size": 100
}
})
client.data_streams.start_change_stream(change_stream.id)
print("Change stream started for real-time updates")
# Snowflake integration for analytics data
snowflake_config = {
"account": "your_account.snowflakecomputing.com",
"user": "ML_USER",
"password": "secure_password",
"warehouse": "ML_WAREHOUSE",
"database": "ANALYTICS",
"schema": "ML_FEATURES",
"role": "ML_ROLE",
"authentication": {
"type": "key_pair", # or "password", "oauth"
"private_key_path": "/path/to/private_key.p8"
}
}
# Create Snowflake connection
snowflake_source = client.data_streams.create_source({
"name": "snowflake-analytics",
"type": "snowflake",
"config": snowflake_config
})
# Large-scale feature extraction
feature_query = """
WITH user_features AS (
SELECT
user_id,
COUNT(DISTINCT session_id) as session_count,
AVG(session_duration_minutes) as avg_session_duration,
SUM(page_views) as total_page_views,
COUNT(DISTINCT DATE(event_timestamp)) as active_days,
ARRAY_AGG(DISTINCT category) as categories_viewed
FROM user_events
WHERE event_timestamp >= DATEADD(day, -30, CURRENT_DATE)
GROUP BY user_id
),
conversion_features AS (
SELECT
user_id,
COUNT(*) as conversion_count,
AVG(conversion_value) as avg_conversion_value,
MAX(conversion_timestamp) as last_conversion
FROM conversions
WHERE conversion_timestamp >= DATEADD(day, -30, CURRENT_DATE)
GROUP BY user_id
)
SELECT
u.user_id,
u.session_count,
u.avg_session_duration,
u.total_page_views,
u.active_days,
u.categories_viewed,
COALESCE(c.conversion_count, 0) as conversion_count,
COALESCE(c.avg_conversion_value, 0) as avg_conversion_value,
CASE WHEN c.last_conversion IS NOT NULL THEN 1 ELSE 0 END as has_converted
FROM user_features u
LEFT JOIN conversion_features c ON u.user_id = c.user_id
WHERE u.session_count >= 5 -- Active users only
"""
# Execute large query with optimization
feature_data = client.data_streams.execute_query({
"source": snowflake_source.id,
"query": feature_query,
"optimization": {
"warehouse_size": "LARGE",
"auto_suspend": 300, # seconds
"multi_cluster": True
},
"output": {
"format": "parquet",
"compression": "snappy",
"partition_by": ["conversion_count"],
"destination": "s3://ml-features/user-features/"
}
})
print(f"Feature extraction completed: {feature_data.row_count} users")
print(f"Query execution time: {feature_data.execution_time}s")
print(f"Data size: {feature_data.size_mb}MB")
# Create materialized view for real-time features
materialized_view = """
CREATE OR REPLACE STREAM user_feature_stream ON TABLE user_events
SHOW_INITIAL_ROWS = FALSE;
CREATE OR REPLACE TASK refresh_user_features
WAREHOUSE = ML_WAREHOUSE
SCHEDULE = 'USING CRON 0 */4 * * * UTC' -- Every 4 hours
AS
MERGE INTO user_features_real_time AS target
USING (
SELECT
user_id,
COUNT(*) as new_events,
MAX(event_timestamp) as last_activity
FROM user_feature_stream
GROUP BY user_id
) AS source
ON target.user_id = source.user_id
WHEN MATCHED THEN UPDATE SET
event_count = target.event_count + source.new_events,
last_activity = source.last_activity,
updated_at = CURRENT_TIMESTAMP()
WHEN NOT MATCHED THEN INSERT (
user_id, event_count, last_activity, updated_at
) VALUES (
source.user_id, source.new_events, source.last_activity, CURRENT_TIMESTAMP()
);
"""
client.data_streams.execute_ddl({
"source": snowflake_source.id,
"statements": materialized_view
})
print("Real-time feature pipeline created in Snowflake")
Ensure data quality with automated validation and monitoring:
# Comprehensive data quality framework
data_quality_config = {
"schema_validation": {
"enforce_schema": True,
"schema_file": "data_schema.json",
"allow_missing_columns": False,
"allow_extra_columns": True
},
"quality_checks": [
{
"type": "completeness",
"columns": ["user_id", "timestamp", "event_type"],
"threshold": 0.95 # 95% completeness required
},
{
"type": "uniqueness",
"columns": ["user_id", "timestamp"],
"threshold": 1.0 # Must be unique
},
{
"type": "range",
"column": "age",
"min": 13,
"max": 120
},
{
"type": "pattern",
"column": "email",
"pattern": r"^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$"
},
{
"type": "distribution",
"column": "revenue",
"check": "no_outliers",
"method": "iqr",
"threshold": 3.0
}
],
"anomaly_detection": {
"enabled": True,
"methods": ["isolation_forest", "local_outlier_factor"],
"contamination": 0.1,
"features": ["numerical_columns"]
},
"drift_detection": {
"enabled": True,
"reference_period": "last_week",
"methods": ["ks_test", "chi2_test"],
"threshold": 0.05
}
}
# Apply quality checks to data pipeline
quality_pipeline = client.data_streams.create_quality_pipeline({
"name": "user-data-quality",
"source": "user-events-stream",
"config": data_quality_config,
"actions": {
"on_failure": ["quarantine", "alert"],
"on_anomaly": ["flag", "notify"],
"on_drift": ["retrain_trigger", "alert"]
},
"notifications": {
"email": ["data-team@company.com"],
"slack": "#data-quality-alerts",
"webhook": "https://monitoring.company.com/webhooks/data-quality"
}
})
# Monitor data quality metrics
quality_report = client.data_streams.get_quality_report(
pipeline_id=quality_pipeline.id,
time_range="last_24h"
)
print("Data Quality Report:")
print(f"Overall score: {quality_report.overall_score:.2%}")
print(f"Records processed: {quality_report.records_processed:,}")
print(f"Records failed: {quality_report.records_failed:,}")
print(f"Quality issues detected: {len(quality_report.issues)}")
for issue in quality_report.issues:
print(f" - {issue.type}: {issue.description}")
print(f" Affected records: {issue.affected_count}")
print(f" Severity: {issue.severity}")
# Set up automated remediation
remediation_rules = [
{
"condition": "completeness < 0.9",
"action": "backfill_missing_data",
"config": {"method": "forward_fill", "max_gap": 5}
},
{
"condition": "drift_detected == True",
"action": "trigger_retraining",
"config": {"model": "user-classifier", "priority": "high"}
},
{
"condition": "anomaly_rate > 0.05",
"action": "quarantine_data",
"config": {"quarantine_bucket": "s3://quarantine-data/"}
}
]
client.data_streams.configure_auto_remediation(
pipeline_id=quality_pipeline.id,
rules=remediation_rules
)
print("Auto-remediation rules configured")
Comprehensive monitoring strategies for AI models, infrastructure, and business metrics with proactive alerting and automated remediation.
Track model accuracy, drift, and performance in production:
# Set up comprehensive model monitoring
model_monitor = client.cortexlogs.create_model_monitor({
"deployment_name": "production-classifier",
"monitoring_config": {
"performance_tracking": {
"enabled": True,
"metrics": ["accuracy", "precision", "recall", "f1_score"],
"ground_truth_source": "s3://labels/production-labels/",
"evaluation_frequency": "daily",
"min_samples": 1000
},
"drift_detection": {
"enabled": True,
"input_drift": {
"method": "ks_test",
"threshold": 0.05,
"features": "all"
},
"output_drift": {
"method": "psi", # Population Stability Index
"threshold": 0.1,
"bins": 10
},
"concept_drift": {
"method": "ddm", # Drift Detection Method
"warning_threshold": 2.0,
"drift_threshold": 3.0
}
},
"bias_monitoring": {
"enabled": True,
"protected_attributes": ["gender", "age_group", "ethnicity"],
"fairness_metrics": ["demographic_parity", "equalized_odds"],
"threshold": 0.1
},
"explainability": {
"enabled": True,
"method": "shap",
"sample_rate": 0.1, # Explain 10% of predictions
"features_to_track": ["top_10"]
}
},
"alerting": {
"accuracy_drop": {
"threshold": 0.05, # 5% drop
"severity": "critical"
},
"drift_detected": {
"severity": "warning"
},
"bias_detected": {
"severity": "high"
}
}
})
# Track model performance over time
performance_metrics = client.cortexlogs.get_model_performance(
deployment_name="production-classifier",
time_range="last_30_days",
group_by="day"
)
print("Model Performance Trend:")
for day_metric in performance_metrics:
print(f"Date: {day_metric.date}")
print(f" Accuracy: {day_metric.accuracy:.3f}")
print(f" Drift Score: {day_metric.drift_score:.3f}")
print(f" Prediction Volume: {day_metric.prediction_count:,}")
# Generate model performance report
report = client.cortexlogs.generate_model_report({
"deployment_name": "production-classifier",
"time_range": "last_week",
"include_sections": [
"performance_summary",
"drift_analysis",
"bias_assessment",
"feature_importance",
"error_analysis"
],
"format": "pdf",
"recipients": ["ml-team@company.com"]
})
print(f"Model report generated: {report.download_url}")
Monitor GPU utilization, costs, and system health:
# GPU utilization monitoring
gpu_monitor = client.cortexlogs.create_infrastructure_monitor({
"name": "gpu-utilization-monitor",
"type": "gpu_metrics",
"config": {
"instances": "all", # or specific instance IDs
"metrics": [
"gpu_utilization",
"gpu_memory_utilization",
"gpu_temperature",
"power_consumption",
"compute_utilization"
],
"collection_interval": "30s",
"aggregation_window": "5m"
},
"alerts": [
{
"name": "Low GPU Utilization",
"condition": "gpu_utilization < 30",
"duration": "10m",
"severity": "warning",
"action": "cost_optimization_suggestion"
},
{
"name": "GPU Memory High",
"condition": "gpu_memory_utilization > 90",
"duration": "2m",
"severity": "critical",
"action": "scale_up_suggestion"
},
{
"name": "GPU Overheating",
"condition": "gpu_temperature > 85",
"duration": "1m",
"severity": "critical",
"action": "immediate_alert"
}
]
})
# Get real-time GPU metrics
gpu_metrics = client.cortexlogs.get_gpu_metrics(
time_range="last_hour",
granularity="1m"
)
for instance_id, metrics in gpu_metrics.items():
print(f"Instance {instance_id}:")
print(f" GPU Utilization: {metrics.avg_gpu_utilization:.1f}%")
print(f" Memory Usage: {metrics.avg_memory_utilization:.1f}%")
print(f" Temperature: {metrics.avg_temperature:.1f}°C")
print(f" Power: {metrics.avg_power_consumption:.1f}W")
# Create GPU utilization dashboard
dashboard = client.cortexlogs.create_dashboard({
"name": "GPU Infrastructure Dashboard",
"widgets": [
{
"type": "time_series",
"title": "GPU Utilization",
"metrics": ["gpu_utilization"],
"group_by": "instance_id"
},
{
"type": "heatmap",
"title": "GPU Memory Usage",
"metric": "gpu_memory_utilization",
"x_axis": "time",
"y_axis": "instance_id"
},
{
"type": "gauge",
"title": "Average GPU Temperature",
"metric": "gpu_temperature",
"aggregation": "avg",
"thresholds": [60, 75, 85]
},
{
"type": "table",
"title": "Instance Status",
"columns": ["instance_id", "status", "utilization", "cost_per_hour"]
}
]
})
print(f"GPU dashboard created: {dashboard.url}")
# Cost monitoring and optimization
cost_monitor = client.cortexlogs.create_cost_monitor({
"name": "ai-infrastructure-costs",
"budget": {
"monthly_limit": 10000, # $10,000/month
"alert_thresholds": [50, 75, 90, 100], # Percentage of budget
"auto_actions": {
"at_90_percent": ["scale_down_dev_instances"],
"at_100_percent": ["pause_non_critical_deployments"]
}
},
"cost_tracking": {
"granularity": "hourly",
"dimensions": ["service", "instance_type", "deployment", "user"],
"include_predictions": True # Forecast spending
},
"optimization": {
"recommendations": True,
"auto_rightsizing": {
"enabled": True,
"min_utilization": 60, # Suggest smaller instances if < 60%
"evaluation_period": "7d"
},
"spot_instance_suggestions": True,
"reserved_instance_analysis": True
}
})
# Get detailed cost breakdown
cost_analysis = client.cortexlogs.get_cost_analysis({
"time_range": "current_month",
"group_by": ["service", "deployment"],
"include_forecast": True
})
print("Cost Analysis:")
print(f"Current month spend: ${cost_analysis.current_spend:.2f}")
print(f"Forecasted month-end: ${cost_analysis.forecasted_spend:.2f}")
print(f"Budget utilization: {cost_analysis.budget_utilization:.1%}")
print("\nTop cost drivers:")
for driver in cost_analysis.top_cost_drivers[:5]:
print(f" {driver.resource}: ${driver.cost:.2f} ({driver.percentage:.1%})")
print("\nCost optimization recommendations:")
for rec in cost_analysis.recommendations:
print(f" 💡 {rec.title}")
print(f" Potential savings: ${rec.monthly_savings:.2f}/month")
print(f" Action: {rec.recommended_action}")
# Set up automated cost optimization
cost_optimizer = client.cortexlogs.create_cost_optimizer({
"rules": [
{
"name": "Scale down idle dev instances",
"condition": "utilization < 20% AND environment = 'dev'",
"duration": "1h",
"action": "scale_down",
"savings_estimate": "$500/month"
},
{
"name": "Use spot instances for training",
"condition": "job_type = 'training' AND duration > 30min",
"action": "suggest_spot_instance",
"savings_estimate": "70%"
},
{
"name": "Auto-shutdown weekend instances",
"condition": "weekend AND non_production",
"action": "schedule_shutdown",
"schedule": "Fri 18:00 - Mon 06:00"
}
],
"approval_required": True,
"notification_channel": "#cost-optimization"
})
print("Cost optimization rules configured")
# Comprehensive health monitoring
health_monitor = client.cortexlogs.create_health_monitor({
"name": "platform-health-monitor",
"components": {
"deployments": {
"health_checks": [
{"type": "http", "endpoint": "/health", "timeout": "5s"},
{"type": "prediction", "sample_input": "test_data", "timeout": "10s"}
],
"sla_targets": {
"availability": 99.9,
"response_time": "2s",
"error_rate": 0.1
}
},
"data_pipelines": {
"health_checks": [
{"type": "data_freshness", "max_age": "1h"},
{"type": "throughput", "min_rate": "1000/min"},
{"type": "quality_score", "min_score": 0.95}
]
},
"training_jobs": {
"health_checks": [
{"type": "progress", "min_improvement": "1%/hour"},
{"type": "resource_usage", "max_idle_time": "10min"},
{"type": "convergence", "plateau_threshold": 100}
]
}
},
"synthetic_monitoring": {
"enabled": True,
"tests": [
{
"name": "End-to-end inference test",
"frequency": "5m",
"steps": [
{"action": "upload_image", "input": "test_images/sample.jpg"},
{"action": "predict", "deployment": "production-classifier"},
{"action": "verify_response", "expected_format": "classification"}
],
"alerts": {
"failure": "immediate",
"latency_high": "warning"
}
},
{
"name": "Training pipeline test",
"frequency": "1h",
"steps": [
{"action": "submit_training_job", "config": "test_config"},
{"action": "wait_for_start", "timeout": "5m"},
{"action": "check_metrics", "duration": "10m"},
{"action": "cancel_job"}
]
}
]
}
})
# Get system health overview
health_status = client.cortexlogs.get_health_overview()
print("Platform Health Status:")
print(f"Overall status: {health_status.overall_status}")
print(f"Uptime: {health_status.uptime:.2%}")
print("\nComponent Status:")
for component, status in health_status.components.items():
status_icon = "✅" if status.healthy else "❌"
print(f" {status_icon} {component}: {status.status}")
if not status.healthy:
print(f" Issues: {', '.join(status.issues)}")
print("\nSLA Performance:")
for sla, performance in health_status.sla_performance.items():
print(f" {sla}: {performance.current:.2%} (Target: {performance.target:.2%})")
# Create incident when health issues detected
if not health_status.overall_healthy:
incident = client.cortexlogs.create_incident({
"title": "Platform Health Degradation",
"description": "Automated health check detected issues",
"severity": "high" if health_status.critical_issues else "medium",
"affected_components": [c for c, s in health_status.components.items() if not s.healthy],
"assign_to": "oncall",
"auto_escalate": True
})
print(f"Incident created: {incident.id}")
# Health check automation
health_automation = client.cortexlogs.create_health_automation({
"rules": [
{
"condition": "deployment_health = false",
"actions": [
"restart_unhealthy_instances",
"scale_up_healthy_instances",
"notify_oncall"
]
},
{
"condition": "data_pipeline_stalled = true",
"actions": [
"restart_pipeline",
"check_source_connectivity",
"alert_data_team"
]
},
{
"condition": "training_job_stuck = true",
"actions": [
"save_checkpoint",
"restart_with_smaller_batch",
"notify_ml_team"
]
}
],
"approval_required": False, # Auto-remediation enabled
"max_actions_per_hour": 10
})
print("Health automation configured")
Track business impact and ROI of AI deployments:
# Business impact monitoring
business_monitor = client.cortexlogs.create_business_monitor({
"name": "ai-business-impact",
"metrics": {
"revenue_impact": {
"source": "analytics_db",
"query": """
SELECT
DATE(timestamp) as date,
SUM(CASE WHEN ai_prediction_used = true THEN revenue ELSE 0 END) as ai_assisted_revenue,
SUM(revenue) as total_revenue
FROM sales_transactions
WHERE timestamp >= CURRENT_DATE - INTERVAL '30 days'
GROUP BY DATE(timestamp)
""",
"target": "increase_by_15_percent"
},
"customer_satisfaction": {
"source": "support_system",
"metric": "csat_score",
"filter": "ai_interaction = true",
"target": "> 4.5"
},
"operational_efficiency": {
"metrics": [
{"name": "processing_time", "target": "< 30s"},
{"name": "manual_review_rate", "target": "< 10%"},
{"name": "automation_rate", "target": "> 80%"}
]
},
"model_adoption": {
"metrics": [
{"name": "daily_active_users", "target": "growth > 5%"},
{"name": "api_usage", "target": "growth > 10%"},
{"name": "feature_adoption", "target": "> 60%"}
]
}
},
"reporting": {
"frequency": "weekly",
"recipients": ["executives@company.com", "product@company.com"],
"format": "executive_summary",
"include_roi_analysis": True
}
})
# Generate business impact report
business_report = client.cortexlogs.generate_business_report({
"time_range": "last_quarter",
"include_sections": [
"executive_summary",
"revenue_impact",
"cost_savings",
"efficiency_gains",
"user_adoption",
"roi_analysis",
"recommendations"
],
"benchmark_against": "previous_quarter"
})
print("Business Impact Summary:")
print(f"Revenue Impact: ${business_report.revenue_impact:.2f}")
print(f"Cost Savings: ${business_report.cost_savings:.2f}")
print(f"ROI: {business_report.roi:.1%}")
print(f"Efficiency Improvement: {business_report.efficiency_gain:.1%}")
# A/B testing for model impact
ab_test = client.cortexlogs.create_ab_test({
"name": "recommendation_model_v2",
"hypothesis": "New model improves click-through rate by 15%",
"variants": {
"control": {
"model": "recommendation_v1",
"traffic_percentage": 50
},
"treatment": {
"model": "recommendation_v2",
"traffic_percentage": 50
}
},
"success_metrics": [
{"name": "click_through_rate", "target": "increase"},
{"name": "conversion_rate", "target": "increase"},
{"name": "revenue_per_user", "target": "increase"}
],
"duration": "14_days",
"min_sample_size": 10000,
"statistical_power": 0.8
})
# Monitor A/B test results
ab_results = client.cortexlogs.get_ab_test_results(ab_test.id)
if ab_results.is_significant:
print(f"A/B Test Results (Significant):")
print(f" Control CTR: {ab_results.control.click_through_rate:.2%}")
print(f" Treatment CTR: {ab_results.treatment.click_through_rate:.2%}")
print(f" Improvement: {ab_results.improvement:.1%}")
print(f" Confidence: {ab_results.confidence:.1%}")
if ab_results.recommendation == "deploy_treatment":
print("✅ Recommendation: Deploy new model to production")
else:
print(f"A/B Test ongoing... Current sample size: {ab_results.sample_size}")
Industry-proven best practices for developing, deploying, and maintaining AI systems on the AICortex platform.
# Best practices for model training
class ModelTrainingBestPractices:
def __init__(self, client):
self.client = client
def setup_experiment_tracking(self, experiment_name):
"""Set up comprehensive experiment tracking"""
experiment = self.client.cortexflow.create_experiment({
"name": experiment_name,
"description": "Production model training with best practices",
"tags": ["production", "v2.0", "baseline"],
"metadata": {
"dataset_version": "v1.2.3",
"feature_set": "core_features_v1",
"objective": "improve_accuracy_by_5_percent"
}
})
# Track hyperparameters
experiment.log_params({
"learning_rate": 0.001,
"batch_size": 32,
"architecture": "resnet50",
"optimizer": "adamw",
"scheduler": "cosine_annealing"
})
return experiment
def validate_data_quality(self, dataset_path):
"""Validate data before training"""
validation_results = self.client.data_streams.validate_dataset({
"dataset_path": dataset_path,
"checks": [
"completeness",
"uniqueness",
"consistency",
"distribution_drift",
"label_balance"
],
"reference_dataset": "production_baseline"
})
if not validation_results.passed:
raise ValueError(f"Data validation failed: {validation_results.errors}")
return validation_results
def configure_training_with_best_practices(self, model_config):
"""Configure training job with recommended settings"""
training_config = {
"model_config": model_config,
"training_settings": {
# Reproducibility
"random_seed": 42,
"deterministic": True,
# Optimization
"mixed_precision": True,
"gradient_clipping": 1.0,
"weight_decay": 0.01,
# Regularization
"dropout": 0.1,
"label_smoothing": 0.1,
"data_augmentation": {
"enabled": True,
"strategy": "auto_augment"
},
# Early stopping
"early_stopping": {
"patience": 10,
"min_delta": 0.001,
"restore_best_weights": True
},
# Checkpointing
"checkpointing": {
"save_frequency": "epoch",
"keep_top_k": 3,
"metric": "val_accuracy"
}
},
"validation": {
"validation_split": 0.2,
"cross_validation": {
"enabled": True,
"folds": 5,
"stratified": True
}
},
"monitoring": {
"log_frequency": 100, # Every 100 steps
"metrics": ["loss", "accuracy", "learning_rate", "gradient_norm"],
"visualizations": ["confusion_matrix", "learning_curves"]
}
}
return training_config
def train_with_hyperparameter_optimization(self, base_config):
"""Train model with systematic hyperparameter optimization"""
# Define search space based on best practices
search_space = {
"learning_rate": {
"type": "log_uniform",
"min": 1e-5,
"max": 1e-2,
"recommended_range": [1e-4, 1e-3]
},
"batch_size": {
"type": "categorical",
"choices": [16, 32, 64, 128],
"recommended": 32
},
"optimizer": {
"type": "categorical",
"choices": ["adam", "adamw", "sgd"],
"recommended": "adamw"
},
"weight_decay": {
"type": "uniform",
"min": 0.0,
"max": 0.1,
"recommended_range": [0.01, 0.05]
}
}
# Use Bayesian optimization for efficient search
hpo_job = self.client.cortexflow.create_hpo_job({
"base_config": base_config,
"search_space": search_space,
"optimization_method": "bayesian",
"objective": {
"metric": "val_accuracy",
"direction": "maximize"
},
"budget": {
"max_trials": 30,
"max_runtime": "12h",
"early_stopping": {
"enabled": True,
"patience": 5
}
},
"resource_allocation": {
"parallel_trials": 4,
"instance_type": "gpu.medium"
}
})
return hpo_job
def implement_model_validation(self, model_id):
"""Comprehensive model validation before deployment"""
validation_suite = {
"performance_tests": [
{
"name": "accuracy_test",
"test_set": "holdout_test_set",
"min_accuracy": 0.85
},
{
"name": "robustness_test",
"test_set": "adversarial_examples",
"max_accuracy_drop": 0.1
}
],
"bias_tests": [
{
"name": "demographic_parity",
"protected_attributes": ["gender", "age"],
"max_bias": 0.1
},
{
"name": "equalized_odds",
"protected_attributes": ["ethnicity"],
"max_bias": 0.15
}
],
"inference_tests": [
{
"name": "latency_test",
"max_latency": "100ms",
"percentile": 95
},
{
"name": "throughput_test",
"min_throughput": "1000_requests_per_second"
}
]
}
validation_results = self.client.models.validate({
"model_id": model_id,
"validation_suite": validation_suite,
"generate_report": True
})
return validation_results
# Usage example
trainer = ModelTrainingBestPractices(client)
# 1. Set up experiment tracking
experiment = trainer.setup_experiment_tracking("production_classifier_v2")
# 2. Validate data quality
trainer.validate_data_quality("s3://training-data/v1.2.3/")
# 3. Configure training with best practices
model_config = {"architecture": "efficientnet_b3", "num_classes": 10}
training_config = trainer.configure_training_with_best_practices(model_config)
# 4. Run hyperparameter optimization
hpo_job = trainer.train_with_hyperparameter_optimization(training_config)
# 5. Validate best model
best_model = hpo_job.get_best_model()
validation_results = trainer.implement_model_validation(best_model.id)
if validation_results.passed:
print("✅ Model ready for deployment")
else:
print("❌ Model failed validation:", validation_results.issues)
# Production deployment best practices
class ProductionDeploymentBestPractices:
def __init__(self, client):
self.client = client
def implement_blue_green_deployment(self, model_id, production_deployment):
"""Implement blue-green deployment pattern"""
# Step 1: Deploy green version
green_deployment = self.client.models.deploy({
"model_id": model_id,
"name": f"{production_deployment}-green",
"config": {
"instance_type": "gpu.medium",
"auto_scaling": {
"min_instances": 1,
"max_instances": 5
},
"health_check": {
"enabled": True,
"endpoint": "/health",
"interval": "30s"
}
}
})
# Step 2: Wait for green to be ready
green_deployment.wait_until_ready(timeout=600)
# Step 3: Run smoke tests on green
smoke_test_results = self.run_smoke_tests(green_deployment.name)
if not smoke_test_results.passed:
self.client.deployments.delete(green_deployment.id)
raise Exception(f"Smoke tests failed: {smoke_test_results.errors}")
# Step 4: Run load tests
load_test_results = self.run_load_tests(green_deployment.name)
if not load_test_results.passed:
self.client.deployments.delete(green_deployment.id)
raise Exception(f"Load tests failed: {load_test_results.errors}")
# Step 5: Gradually shift traffic
self.gradual_traffic_shift(production_deployment, green_deployment.name)
# Step 6: Monitor for issues
monitoring_results = self.monitor_deployment_health(
green_deployment.name,
duration="30m"
)
if monitoring_results.healthy:
# Step 7: Complete cutover
self.client.deployments.set_traffic_split({
green_deployment.name: 100,
production_deployment: 0
})
# Step 8: Clean up blue deployment
self.client.deployments.delete(production_deployment)
# Step 9: Rename green to production
self.client.deployments.rename(
green_deployment.id,
production_deployment
)
return green_deployment
else:
# Rollback on issues
self.rollback_deployment(production_deployment, green_deployment.name)
raise Exception("Deployment health check failed, rolled back")
def implement_canary_deployment(self, model_id, production_deployment):
"""Implement canary deployment with gradual rollout"""
# Deploy canary version
canary_deployment = self.client.models.deploy({
"model_id": model_id,
"name": f"{production_deployment}-canary",
"config": {
"instance_type": "gpu.small", # Start small
"auto_scaling": {"min_instances": 1, "max_instances": 2}
}
})
canary_deployment.wait_until_ready()
# Canary rollout phases
rollout_phases = [
{"traffic_percent": 1, "duration": "10m", "success_criteria": {"error_rate": 0.01}},
{"traffic_percent": 5, "duration": "20m", "success_criteria": {"error_rate": 0.005}},
{"traffic_percent": 25, "duration": "30m", "success_criteria": {"latency_p95": "200ms"}},
{"traffic_percent": 50, "duration": "1h", "success_criteria": {"accuracy": 0.85}},
{"traffic_percent": 100, "duration": "ongoing", "success_criteria": {}}
]
for phase in rollout_phases:
print(f"Starting canary phase: {phase['traffic_percent']}% traffic")
# Set traffic split
self.client.deployments.set_traffic_split({
production_deployment: 100 - phase["traffic_percent"],
canary_deployment.name: phase["traffic_percent"]
})
# Monitor phase
phase_results = self.monitor_canary_phase(
canary_deployment.name,
duration=phase["duration"],
success_criteria=phase["success_criteria"]
)
if not phase_results.success:
print(f"Canary phase failed: {phase_results.issues}")
self.rollback_canary(production_deployment, canary_deployment.name)
return False
print(f"Canary phase {phase['traffic_percent']}% completed successfully")
# Promote canary to production
self.promote_canary_to_production(production_deployment, canary_deployment.name)
return True
def run_smoke_tests(self, deployment_name):
"""Run comprehensive smoke tests"""
test_cases = [
{
"name": "health_check",
"endpoint": "/health",
"expected_status": 200
},
{
"name": "prediction_test",
"endpoint": "/predict",
"input": {"text": "test input"},
"expected_format": "prediction_response"
},
{
"name": "batch_prediction_test",
"endpoint": "/predict/batch",
"input": [{"text": f"test {i}"} for i in range(10)],
"expected_count": 10
},
{
"name": "error_handling_test",
"endpoint": "/predict",
"input": {"invalid": "data"},
"expected_status": 400
}
]
results = []
for test in test_cases:
try:
result = self.client.deployments.test_endpoint(
deployment_name=deployment_name,
test_case=test
)
results.append({"test": test["name"], "passed": result.success})
except Exception as e:
results.append({"test": test["name"], "passed": False, "error": str(e)})
passed = all(r["passed"] for r in results)
return type('SmokeTestResults', (), {
"passed": passed,
"results": results,
"errors": [r.get("error") for r in results if not r["passed"]]
})()
def implement_feature_flags(self, deployment_name):
"""Implement feature flags for controlled rollouts"""
feature_flags = {
"new_model_enabled": {
"description": "Enable new model version",
"default_value": False,
"rollout_strategy": {
"type": "percentage",
"initial_percentage": 0,
"target_percentage": 100,
"increment": 10,
"interval": "1h"
},
"targeting_rules": [
{
"condition": "user.tier == 'premium'",
"enabled": True
},
{
"condition": "user.beta_tester == True",
"enabled": True
}
]
},
"advanced_features": {
"description": "Enable advanced model features",
"default_value": False,
"rollout_strategy": {
"type": "user_segments",
"segments": ["internal_users", "beta_testers", "premium_users"]
}
}
}
return self.client.deployments.configure_feature_flags({
"deployment_name": deployment_name,
"flags": feature_flags,
"monitoring": {
"track_usage": True,
"track_performance": True,
"alert_on_errors": True
}
})
def setup_deployment_monitoring(self, deployment_name):
"""Set up comprehensive deployment monitoring"""
monitoring_config = {
"metrics": {
"business_metrics": [
"prediction_accuracy",
"user_satisfaction",
"conversion_rate",
"revenue_impact"
],
"technical_metrics": [
"response_time",
"throughput",
"error_rate",
"cpu_utilization",
"memory_usage",
"gpu_utilization"
],
"ml_metrics": [
"prediction_confidence",
"feature_drift",
"data_quality_score",
"model_staleness"
]
},
"alerts": [
{
"name": "High Error Rate",
"condition": "error_rate > 0.01",
"severity": "critical",
"actions": ["auto_rollback", "page_oncall"]
},
{
"name": "Performance Degradation",
"condition": "p95_latency > 500ms",
"severity": "warning",
"actions": ["scale_up", "notify_team"]
},
{
"name": "Accuracy Drop",
"condition": "accuracy < baseline - 0.05",
"severity": "high",
"actions": ["flag_for_review", "alert_ml_team"]
}
],
"dashboards": [
{
"name": "Production Overview",
"widgets": ["error_rate", "latency", "throughput", "accuracy"]
},
{
"name": "Business Impact",
"widgets": ["conversion_rate", "revenue_impact", "user_satisfaction"]
}
]
}
return self.client.cortexlogs.create_deployment_monitor({
"deployment_name": deployment_name,
"config": monitoring_config
})
# Usage example
deployer = ProductionDeploymentBestPractices(client)
# Blue-green deployment
try:
new_deployment = deployer.implement_blue_green_deployment(
model_id="new_model_v2",
production_deployment="production-classifier"
)
print("✅ Blue-green deployment completed successfully")
except Exception as e:
print(f"❌ Deployment failed: {e}")
# Set up monitoring for new deployment
deployer.setup_deployment_monitoring(new_deployment.name)
print("✅ Monitoring configured")
# Data security best practices
class DataSecurityBestPractices:
def __init__(self, client):
self.client = client
def implement_data_encryption(self):
"""Implement end-to-end data encryption"""
encryption_config = {
"data_at_rest": {
"algorithm": "AES-256",
"key_management": "customer_managed",
"key_rotation": "automatic",
"rotation_period": "90_days"
},
"data_in_transit": {
"protocol": "TLS_1_3",
"cipher_suites": ["TLS_AES_256_GCM_SHA384"],
"certificate_validation": "strict"
},
"data_in_processing": {
"memory_encryption": True,
"secure_enclaves": True,
"confidential_computing": True
}
}
return self.client.security.configure_encryption(encryption_config)
def setup_data_access_controls(self):
"""Configure fine-grained data access controls"""
access_policies = {
"data_classification": {
"public": {"encryption": "optional", "access_logging": False},
"internal": {"encryption": "required", "access_logging": True},
"confidential": {"encryption": "required", "access_logging": True, "approval_required": True},
"restricted": {"encryption": "required", "access_logging": True, "approval_required": True, "audit_trail": True}
},
"role_based_access": {
"data_scientist": {
"permissions": ["read", "analyze"],
"data_types": ["public", "internal"],
"conditions": ["within_office_hours", "from_approved_locations"]
},
"ml_engineer": {
"permissions": ["read", "process", "deploy"],
"data_types": ["public", "internal", "confidential"],
"conditions": ["mfa_required"]
},
"admin": {
"permissions": ["all"],
"data_types": ["all"],
"conditions": ["dual_approval_required"]
}
},
"data_lineage": {
"track_access": True,
"track_transformations": True,
"track_sharing": True,
"retention_period": "7_years"
}
}
return self.client.security.configure_data_access(access_policies)
def implement_privacy_protection(self):
"""Implement privacy protection measures"""
privacy_config = {
"data_minimization": {
"collect_only_necessary": True,
"auto_deletion": {
"enabled": True,
"retention_period": "2_years",
"deletion_method": "cryptographic_erasure"
}
},
"anonymization": {
"pii_detection": True,
"automatic_masking": True,
"techniques": ["k_anonymity", "differential_privacy"],
"privacy_budget": 1.0
},
"consent_management": {
"track_consent": True,
"granular_permissions": True,
"easy_withdrawal": True,
"consent_proofs": True
},
"privacy_by_design": {
"default_privacy_settings": "maximum",
"purpose_limitation": True,
"storage_limitation": True,
"transparency": True
}
}
return self.client.security.configure_privacy_protection(privacy_config)
# Usage
security = DataSecurityBestPractices(client)
security.implement_data_encryption()
security.setup_data_access_controls()
security.implement_privacy_protection()
# Model security best practices
class ModelSecurityBestPractices:
def __init__(self, client):
self.client = client
def implement_model_protection(self, model_id):
"""Protect models from attacks and unauthorized access"""
protection_config = {
"adversarial_detection": {
"enabled": True,
"methods": ["statistical_distance", "feature_squeezing"],
"threshold": 0.8,
"action": "reject_and_log"
},
"input_validation": {
"schema_validation": True,
"range_checking": True,
"format_validation": True,
"sanitization": True
},
"output_filtering": {
"confidence_threshold": 0.7,
"bias_detection": True,
"harmful_content_filter": True,
"information_leakage_prevention": True
},
"model_watermarking": {
"enabled": True,
"technique": "digital_watermark",
"verification_required": True
}
}
return self.client.security.configure_model_protection({
"model_id": model_id,
"config": protection_config
})
def setup_model_integrity_monitoring(self, deployment_name):
"""Monitor model integrity and detect tampering"""
integrity_config = {
"model_verification": {
"checksum_validation": True,
"signature_verification": True,
"hash_algorithm": "SHA-256"
},
"runtime_monitoring": {
"behavior_analysis": True,
"performance_baseline": True,
"anomaly_detection": True,
"drift_detection": True
},
"attack_detection": {
"model_inversion": True,
"membership_inference": True,
"model_extraction": True,
"backdoor_detection": True
},
"alerts": [
{
"type": "integrity_violation",
"severity": "critical",
"action": "immediate_shutdown"
},
{
"type": "attack_detected",
"severity": "high",
"action": "isolate_and_investigate"
}
]
}
return self.client.security.configure_integrity_monitoring({
"deployment_name": deployment_name,
"config": integrity_config
})
def implement_secure_inference(self, deployment_name):
"""Implement secure inference practices"""
secure_inference_config = {
"request_authentication": {
"api_key_required": True,
"jwt_validation": True,
"client_certificates": True
},
"rate_limiting": {
"requests_per_minute": 1000,
"burst_limit": 100,
"per_user_limits": True
},
"request_logging": {
"log_all_requests": True,
"include_metadata": True,
"exclude_sensitive_data": True,
"retention_period": "1_year"
},
"response_security": {
"strip_internal_info": True,
"add_security_headers": True,
"content_type_validation": True
}
}
return self.client.security.configure_secure_inference({
"deployment_name": deployment_name,
"config": secure_inference_config
})
# Usage
model_security = ModelSecurityBestPractices(client)
model_security.implement_model_protection("production_model")
model_security.setup_model_integrity_monitoring("production-classifier")
model_security.implement_secure_inference("production-classifier")
# Performance optimization best practices
class PerformanceOptimizationBestPractices:
def __init__(self, client):
self.client = client
def optimize_model_for_inference(self, model_id):
"""Optimize model for production inference"""
optimization_techniques = {
"quantization": {
"enabled": True,
"precision": "int8", # or "fp16", "int4"
"calibration_dataset": "representative_sample",
"accuracy_threshold": 0.02 # Max 2% accuracy loss
},
"pruning": {
"enabled": True,
"sparsity_level": 0.5, # Remove 50% of weights
"structured": True,
"fine_tuning_epochs": 10
},
"distillation": {
"enabled": True,
"teacher_model": model_id,
"student_architecture": "smaller_efficient_model",
"temperature": 4.0,
"alpha": 0.7
},
"graph_optimization": {
"operator_fusion": True,
"constant_folding": True,
"dead_code_elimination": True,
"layout_optimization": True
},
"compilation": {
"framework": "tensorrt", # or "onnx", "torchscript"
"target_hardware": "gpu",
"batch_size_optimization": True,
"dynamic_shapes": False
}
}
optimized_model = self.client.models.optimize({
"model_id": model_id,
"techniques": optimization_techniques,
"validation": {
"accuracy_test": True,
"performance_benchmark": True,
"memory_profiling": True
}
})
return optimized_model
def implement_caching_strategy(self, deployment_name):
"""Implement intelligent caching for improved performance"""
caching_config = {
"model_caching": {
"enabled": True,
"cache_size": "2GB",
"eviction_policy": "LRU",
"preload_models": True
},
"prediction_caching": {
"enabled": True,
"cache_duration": "1h",
"similarity_threshold": 0.95,
"cache_size": "500MB",
"exclude_sensitive": True
},
"feature_caching": {
"enabled": True,
"cache_duration": "30m",
"cache_size": "1GB",
"update_strategy": "lazy"
},
"distributed_caching": {
"enabled": True,
"backend": "redis",
"cluster_mode": True,
"replication_factor": 2
}
}
return self.client.deployments.configure_caching({
"deployment_name": deployment_name,
"config": caching_config
})
def optimize_batch_processing(self, deployment_name):
"""Optimize batch processing for throughput"""
batch_config = {
"dynamic_batching": {
"enabled": True,
"max_batch_size": 64,
"max_delay": "50ms",
"batch_timeout": "100ms"
},
"adaptive_batching": {
"enabled": True,
"target_latency": "200ms",
"min_batch_size": 1,
"max_batch_size": 128,
"adjustment_interval": "1m"
},
"batch_optimization": {
"padding_strategy": "minimal",
"sort_by_length": True,
"sequence_bucketing": True,
"memory_efficient": True
},
"pipeline_parallelism": {
"enabled": True,
"stages": ["preprocessing", "inference", "postprocessing"],
"overlap_computation": True
}
}
return self.client.deployments.configure_batch_processing({
"deployment_name": deployment_name,
"config": batch_config
})
def implement_auto_scaling_optimization(self, deployment_name):
"""Implement intelligent auto-scaling"""
scaling_config = {
"metrics_based_scaling": {
"cpu_utilization": {"target": 70, "weight": 0.3},
"gpu_utilization": {"target": 80, "weight": 0.4},
"queue_depth": {"target": 10, "weight": 0.3}
},
"predictive_scaling": {
"enabled": True,
"prediction_window": "30m",
"confidence_threshold": 0.8,
"scaling_buffer": 1.2
},
"scaling_policies": {
"scale_up": {
"cooldown": "2m",
"step_size": 2,
"max_instances": 20
},
"scale_down": {
"cooldown": "5m",
"step_size": 1,
"min_instances": 1
}
},
"cost_optimization": {
"spot_instances": {
"enabled": True,
"percentage": 70,
"fallback_on_demand": True
},
"schedule_based": {
"business_hours_scaling": True,
"weekend_downscaling": True
}
}
}
return self.client.deployments.configure_auto_scaling({
"deployment_name": deployment_name,
"config": scaling_config
})
# Usage
optimizer = PerformanceOptimizationBestPractices(client)
# Optimize model for production
optimized_model = optimizer.optimize_model_for_inference("base_model_v1")
# Deploy optimized model
deployment = client.models.deploy({
"model_id": optimized_model.id,
"name": "optimized-production-model",
"config": {"instance_type": "gpu.medium"}
})
# Configure performance optimizations
optimizer.implement_caching_strategy(deployment.name)
optimizer.optimize_batch_processing(deployment.name)
optimizer.implement_auto_scaling_optimization(deployment.name)
print("✅ Performance optimizations configured")
# Cost optimization best practices
class CostOptimizationBestPractices:
def __init__(self, client):
self.client = client
def implement_resource_optimization(self):
"""Implement comprehensive resource optimization"""
optimization_strategies = {
"right_sizing": {
"enabled": True,
"evaluation_period": "7d",
"utilization_threshold": 60,
"recommendation_engine": True,
"auto_apply": False # Require approval
},
"scheduling": {
"dev_environment_shutdown": {
"enabled": True,
"schedule": "weekdays_18:00_to_08:00",
"weekends": "full_shutdown"
},
"training_job_scheduling": {
"off_peak_hours": True,
"priority_queuing": True,
"spot_instance_preference": True
}
},
"resource_pooling": {
"shared_dev_instances": True,
"dynamic_allocation": True,
"priority_based_preemption": True
}
}
return self.client.cost_optimization.configure_strategies(optimization_strategies)
def setup_budget_controls(self):
"""Set up budget controls and alerts"""
budget_config = {
"monthly_budgets": {
"development": {"limit": 2000, "alert_thresholds": [75, 90]},
"staging": {"limit": 1000, "alert_thresholds": [80, 95]},
"production": {"limit": 10000, "alert_thresholds": [70, 85, 95]}
},
"project_budgets": {
"nlp_project": {"limit": 5000, "period": "quarterly"},
"vision_project": {"limit": 3000, "period": "monthly"}
},
"auto_actions": {
"at_90_percent": ["pause_dev_training", "notify_teams"],
"at_100_percent": ["pause_non_critical", "escalate_to_management"]
},
"cost_allocation": {
"by_team": True,
"by_project": True,
"by_environment": True,
"chargeback_enabled": True
}
}
return self.client.cost_optimization.configure_budgets(budget_config)
def implement_spot_instance_strategy(self):
"""Implement spot instance strategy for cost savings"""
spot_config = {
"workload_suitability": {
"training_jobs": {
"spot_percentage": 80,
"fault_tolerance": "checkpoint_based",
"max_interruption_frequency": "low"
},
"batch_inference": {
"spot_percentage": 60,
"fallback_strategy": "on_demand"
},
"development": {
"spot_percentage": 90,
"data_persistence": "external_storage"
}
},
"spot_fleet_config": {
"diversification": True,
"multiple_instance_types": True,
"multiple_availability_zones": True,
"target_capacity": "flexible"
},
"interruption_handling": {
"graceful_shutdown": True,
"checkpoint_frequency": "5m",
"auto_resume": True,
"notification_lead_time": "2m"
}
}
return self.client.cost_optimization.configure_spot_instances(spot_config)
def setup_cost_monitoring_and_reporting(self):
"""Set up comprehensive cost monitoring"""
monitoring_config = {
"real_time_tracking": {
"granularity": "hourly",
"cost_attribution": ["user", "project", "deployment"],
"anomaly_detection": True
},
"reporting": {
"daily_summaries": True,
"weekly_detailed_reports": True,
"monthly_trend_analysis": True,
"recipients": ["finance@company.com", "engineering-leads@company.com"]
},
"cost_forecasting": {
"enabled": True,
"forecast_horizon": "3_months",
"confidence_interval": 90,
"scenario_analysis": True
},
"optimization_recommendations": {
"automated_analysis": True,
"savings_opportunities": True,
"risk_assessment": True,
"implementation_priority": True
}
}
return self.client.cost_optimization.configure_monitoring(monitoring_config)
# Cost optimization implementation
cost_optimizer = CostOptimizationBestPractices(client)
# Set up resource optimization
cost_optimizer.implement_resource_optimization()
print("✅ Resource optimization configured")
# Configure budget controls
cost_optimizer.setup_budget_controls()
print("✅ Budget controls established")
# Implement spot instance strategy
cost_optimizer.implement_spot_instance_strategy()
print("✅ Spot instance strategy implemented")
# Set up monitoring and reporting
cost_optimizer.setup_cost_monitoring_and_reporting()
print("✅ Cost monitoring configured")
# Generate initial cost report
cost_report = client.cost_optimization.generate_report({
"period": "current_month",
"include_recommendations": True,
"detail_level": "comprehensive"
})
print(f"Current month spend: ${cost_report.total_cost:.2f}")
print(f"Projected savings: ${cost_report.potential_savings:.2f}")
print(f"Top recommendation: {cost_report.top_recommendation}")
# Compliance and governance best practices
class ComplianceGovernanceBestPractices:
def __init__(self, client):
self.client = client
def implement_gdpr_compliance(self):
"""Implement GDPR compliance measures"""
gdpr_config = {
"data_subject_rights": {
"right_to_access": {
"enabled": True,
"response_time": "30_days",
"automated_reports": True
},
"right_to_rectification": {
"enabled": True,
"data_correction_workflow": True
},
"right_to_erasure": {
"enabled": True,
"deletion_verification": True,
"backup_deletion": True
},
"right_to_portability": {
"enabled": True,
"export_formats": ["json", "csv", "xml"]
}
},
"consent_management": {
"explicit_consent": True,
"granular_permissions": True,
"consent_withdrawal": True,
"consent_records": "permanent_audit_trail"
},
"privacy_by_design": {
"data_minimization": True,
"purpose_limitation": True,
"storage_limitation": True,
"accuracy_principle": True
},
"dpo_requirements": {
"dpo_contact": "dpo@company.com",
"privacy_impact_assessments": True,
"data_breach_notification": {
"internal_notification": "immediate",
"authority_notification": "72_hours",
"subject_notification": "without_undue_delay"
}
}
}
return self.client.compliance.configure_gdpr(gdpr_config)
def implement_model_governance(self):
"""Implement comprehensive model governance"""
governance_framework = {
"model_lifecycle_management": {
"development_standards": {
"code_review_required": True,
"testing_requirements": ["unit", "integration", "bias"],
"documentation_standards": "comprehensive",
"version_control": "mandatory"
},
"approval_workflow": {
"development_to_staging": ["technical_review", "security_scan"],
"staging_to_production": ["business_approval", "compliance_check", "performance_validation"],
"approver_matrix": {
"technical_review": "senior_ml_engineer",
"business_approval": "product_manager",
"compliance_check": "compliance_officer"
}
}
},
"risk_management": {
"risk_assessment": {
"required_for_production": True,
"update_frequency": "quarterly",
"risk_categories": ["technical", "business", "ethical", "legal"]
},
"bias_monitoring": {
"automated_testing": True,
"protected_attributes": ["gender", "race", "age"],
"fairness_metrics": ["demographic_parity", "equal_opportunity"],
"threshold_alerts": True
},
"explainability_requirements": {
"high_risk_decisions": "full_explanation",
"medium_risk_decisions": "summary_explanation",
"low_risk_decisions": "explanation_on_request"
}
},
"audit_and_compliance": {
"audit_trail": {
"model_decisions": True,
"data_access": True,
"configuration_changes": True,
"retention_period": "7_years"
},
"compliance_monitoring": {
"automated_checks": True,
"compliance_dashboard": True,
"violation_alerts": True,
"remediation_workflows": True
}
}
}
return self.client.governance.configure_framework(governance_framework)
def setup_audit_logging(self):
"""Set up comprehensive audit logging"""
audit_config = {
"log_categories": {
"access_logs": {
"user_authentication": True,
"api_access": True,
"data_access": True,
"admin_actions": True
},
"model_logs": {
"training_events": True,
"deployment_events": True,
"prediction_logs": True,
"model_updates": True
},
"system_logs": {
"configuration_changes": True,
"security_events": True,
"error_events": True,
"performance_events": False # Too verbose
}
},
"log_retention": {
"security_logs": "10_years",
"compliance_logs": "7_years",
"operational_logs": "2_years",
"debug_logs": "30_days"
},
"log_integrity": {
"cryptographic_hashing": True,
"tamper_detection": True,
"secure_storage": True,
"log_signing": True
},
"compliance_reporting": {
"automated_reports": True,
"report_schedules": {
"daily": ["security_summary"],
"weekly": ["access_report", "model_usage"],
"monthly": ["compliance_status", "audit_summary"],
"quarterly": ["risk_assessment", "governance_review"]
}
}
}
return self.client.compliance.configure_audit_logging(audit_config)
# Compliance implementation
compliance = ComplianceGovernanceBestPractices(client)
# Implement GDPR compliance
compliance.implement_gdpr_compliance()
print("✅ GDPR compliance configured")
# Set up model governance
compliance.implement_model_governance()
print("✅ Model governance framework established")
# Configure audit logging
compliance.setup_audit_logging()
print("✅ Audit logging configured")
# Generate compliance dashboard
dashboard = client.compliance.create_dashboard({
"widgets": [
"compliance_status_overview",
"gdpr_requests_tracking",
"model_approval_pipeline",
"audit_log_summary",
"risk_assessment_status"
],
"refresh_interval": "1h",
"access_control": ["compliance_team", "legal_team", "executives"]
})
print(f"✅ Compliance dashboard created: {dashboard.url}")
Practical examples and code snippets to help you get started quickly with common AICortex use cases.
Build and deploy an image classification model using pre-trained ResNet:
import aicortex
from PIL import Image
import requests
from io import BytesIO
# Initialize client
client = aicortex.Client(api_key="your_api_key")
# Deploy ResNet-50 model
deployment = client.models.deploy(
model_id="resnet50-imagenet",
name="image-classifier",
config={
"instance_type": "gpu.small",
"auto_scaling": {
"min_instances": 1,
"max_instances": 5
}
}
)
print(f"Deploying model... Status: {deployment.status}")
deployment.wait_until_ready(timeout=300)
print("Model ready for inference!")
# Function to classify image
def classify_image(image_url):
result = client.models.predict(
deployment_name="image-classifier",
inputs={"image": image_url}
)
print(f"Top predictions for {image_url}:")
for pred in result.predictions[:3]:
print(f" {pred.label}: {pred.confidence:.1%}")
return result.predictions[0]
# Example usage
image_urls = [
"https://example.com/cat.jpg",
"https://example.com/dog.jpg",
"https://example.com/car.jpg"
]
for url in image_urls:
top_prediction = classify_image(url)
print(f"Best guess: {top_prediction.label}\n")
# Batch prediction for multiple images
batch_result = client.models.predict_batch(
deployment_name="image-classifier",
inputs=[{"image": url} for url in image_urls]
)
print("Batch results:")
for i, result in enumerate(batch_result.predictions):
print(f"Image {i+1}: {result[0].label} ({result[0].confidence:.1%})")
import { AICortexClient } from '@aicortex/client';
// Initialize client
const client = new AICortexClient({
apiKey: 'your_api_key'
});
// Deploy ResNet-50 model
async function deployImageClassifier() {
const deployment = await client.models.deploy({
modelId: 'resnet50-imagenet',
name: 'image-classifier',
config: {
instanceType: 'gpu.small',
autoScaling: {
minInstances: 1,
maxInstances: 5
}
}
});
console.log(`Deploying model... Status: ${deployment.status}`);
await deployment.waitUntilReady({ timeout: 300000 });
console.log('Model ready for inference!');
return deployment;
}
// Function to classify image
async function classifyImage(imageUrl) {
const result = await client.models.predict({
deploymentName: 'image-classifier',
inputs: { image: imageUrl }
});
console.log(`Top predictions for ${imageUrl}:`);
result.predictions.slice(0, 3).forEach(pred => {
console.log(` ${pred.label}: ${(pred.confidence * 100).toFixed(1)}%`);
});
return result.predictions[0];
}
// Example usage
async function main() {
await deployImageClassifier();
const imageUrls = [
'https://example.com/cat.jpg',
'https://example.com/dog.jpg',
'https://example.com/car.jpg'
];
for (const url of imageUrls) {
const topPrediction = await classifyImage(url);
console.log(`Best guess: ${topPrediction.label}\n`);
}
// Batch prediction for multiple images
const batchResult = await client.models.predictBatch({
deploymentName: 'image-classifier',
inputs: imageUrls.map(url => ({ image: url }))
});
console.log('Batch results:');
batchResult.predictions.forEach((result, i) => {
console.log(`Image ${i+1}: ${result[0].label} (${(result[0].confidence * 100).toFixed(1)}%)`);
});
}
main().catch(console.error);
Deploy and use a large language model for text generation:
import aicortex
client = aicortex.Client(api_key="your_api_key")
# Deploy GPT-3.5 Turbo
deployment = client.models.deploy(
model_id="gpt-3.5-turbo",
name="text-generator",
config={
"instance_type": "gpu.medium",
"auto_scaling": {
"min_instances": 1,
"max_instances": 3
}
}
)
deployment.wait_until_ready()
# Generate text
def generate_text(prompt, max_tokens=100, temperature=0.7):
result = client.models.predict(
deployment_name="text-generator",
inputs={
"prompt": prompt,
"max_tokens": max_tokens,
"temperature": temperature
}
)
return result.text
# Examples
prompts = [
"Write a short story about a robot learning to paint:",
"Explain quantum computing in simple terms:",
"Create a recipe for chocolate chip cookies:"
]
for prompt in prompts:
print(f"Prompt: {prompt}")
response = generate_text(prompt, max_tokens=150)
print(f"Response: {response}\n")
print("-" * 50)
# Conversational chat
def chat_with_model():
conversation = []
print("Chat with AI (type 'quit' to exit)")
while True:
user_input = input("You: ")
if user_input.lower() == 'quit':
break
# Add context from conversation
context = "\n".join([f"Human: {msg['human']}\nAI: {msg['ai']}"
for msg in conversation[-3:]]) # Last 3 exchanges
full_prompt = f"{context}\nHuman: {user_input}\nAI:"
response = generate_text(full_prompt, max_tokens=200, temperature=0.8)
print(f"AI: {response}")
conversation.append({"human": user_input, "ai": response})
# Start chat
chat_with_model()
Transcribe audio files using Whisper models:
import aicortex
import requests
import tempfile
import os
client = aicortex.Client(api_key="your_api_key")
# Deploy Whisper Large V3
deployment = client.models.deploy(
model_id="whisper-large-v3",
name="audio-transcriber",
config={
"instance_type": "gpu.small",
"auto_scaling": {
"min_instances": 1,
"max_instances": 3
}
}
)
deployment.wait_until_ready()
def transcribe_audio(audio_url, language=None):
"""Transcribe audio from URL or file path"""
if audio_url.startswith('http'):
# Download audio file
response = requests.get(audio_url)
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as f:
f.write(response.content)
audio_path = f.name
else:
audio_path = audio_url
try:
# Transcribe audio
with open(audio_path, 'rb') as audio_file:
result = client.models.predict(
deployment_name="audio-transcriber",
inputs={
"audio": audio_file,
"language": language, # Optional: "en", "es", "fr", etc.
"response_format": "json",
"temperature": 0.0
}
)
return result
finally:
# Cleanup temporary file
if audio_url.startswith('http'):
os.unlink(audio_path)
# Example usage
audio_files = [
"https://example.com/speech1.mp3",
"https://example.com/speech2.wav",
"./local_audio.mp3"
]
for audio_url in audio_files:
print(f"Transcribing: {audio_url}")
result = transcribe_audio(audio_url, language="en")
print(f"Transcript: {result.text}")
print(f"Language detected: {result.language}")
print(f"Duration: {result.duration:.2f}s")
# Print word-level timestamps if available
if hasattr(result, 'words'):
print("Word timestamps:")
for word in result.words[:10]: # First 10 words
print(f" {word.word} ({word.start:.1f}s - {word.end:.1f}s)")
print("-" * 50)
# Batch transcription
def batch_transcribe(audio_urls):
"""Transcribe multiple audio files in parallel"""
batch_inputs = []
for url in audio_urls:
if url.startswith('http'):
batch_inputs.append({"audio": url})
else:
with open(url, 'rb') as f:
batch_inputs.append({"audio": f.read()})
results = client.models.predict_batch(
deployment_name="audio-transcriber",
inputs=batch_inputs
)
return results
# Process multiple files
batch_results = batch_transcribe(audio_files)
for i, result in enumerate(batch_results.predictions):
print(f"File {i+1}: {result.text[:100]}...")
Common questions about using the AICortex platform, with detailed answers and solutions.
AICortex is a comprehensive AI infrastructure platform that provides serverless GPU training, model deployment, and intelligent orchestration for enterprise-grade AI applications. It consists of seven integrated components designed to simplify the entire AI development lifecycle.
AICortex uses a pay-per-use pricing model with no upfront costs. You're charged based on compute time (per second billing), API requests, and data storage. We offer volume discounts for high-usage customers and transparent pricing with no hidden fees.
You can deploy any type of AI model including large language models (LLMs), computer vision models, audio processing models, time series forecasting models, and custom models. We support popular frameworks like PyTorch, TensorFlow, and ONNX.
We provide access to NVIDIA T4, V100, A100, and H100 GPUs across different instance types. Choose from gpu.small (T4), gpu.medium (V100), gpu.large (A100), and gpu.xlarge (H100) based on your model's requirements.
Pre-trained models from our Model Hub typically deploy in 2-5 minutes. Custom models may take 5-15 minutes depending on size and complexity. Our cold-start times are under 30 seconds for most models.
Yes! You can upload and deploy custom models using our Model Hub. We support custom Docker containers, inference scripts, and dependency management. You maintain full control over your model's code and configuration.
We support all common data formats including JSON, CSV, Parquet, images (JPEG, PNG, WebP), audio (MP3, WAV, FLAC), video (MP4, AVI), and binary data. Data can be ingested from S3, Google Drive, Kafka, databases, and custom APIs.
CortexLogs provides comprehensive monitoring with real-time metrics, logs, and alerts. You can track performance, costs, errors, and custom metrics through our dashboard or API. We also support integration with external monitoring tools.
We implement enterprise-grade security with AES-256 encryption, VPC isolation, SOC 2 Type II compliance, and GDPR readiness. Your data is encrypted in transit and at rest, with strict access controls and audit logging.
Yes, we offer hybrid and on-premises deployment options for enterprise customers with specific security or compliance requirements. Contact our sales team to discuss custom deployment scenarios.
We are SOC 2 Type II compliant, GDPR ready, and working toward HIPAA compliance. We maintain comprehensive security documentation and undergo regular third-party security audits.
Set budget alerts, auto-scaling limits, and instance scheduling to optimize costs. Use our cost calculator, monitoring dashboard, and receive detailed billing breakdowns. We also offer reserved instances for predictable workloads.
We provide 24/7 support via chat, email, and phone. Free tier includes community support, Pro tier includes priority support, and Enterprise customers get dedicated support engineers and SLA guarantees.
We offer a 30-day money-back guarantee for new customers. For ongoing service issues, we work with customers on a case-by-case basis to ensure satisfaction with our platform.
Common issues and their solutions to help you quickly resolve problems with the AICortex platform.
Symptoms: API requests return 401 status code
# Check if API key is set
echo $AICORTEX_API_KEY
# Verify API key format (should start with 'ak_')
# Example: ak_1234567890abcdef...
Generate a new API key in your dashboard and update your environment variables.
# Correct format
Authorization: Bearer your_api_key_here
# Incorrect formats
Authorization: your_api_key_here # Missing "Bearer"
Authorization: Token your_api_key_here # Wrong prefix
Symptoms: Model deployment doesn't progress beyond "deploying" state
client.deployments.get_logs("deployment-name")
# Check deployment status and logs
deployment = client.deployments.get("my-deployment")
print(f"Status: {deployment.status}")
print(f"Error message: {deployment.error_message}")
# Get detailed logs
logs = client.deployments.get_logs("my-deployment", lines=50)
for log in logs:
print(f"{log.timestamp}: {log.message}")
Symptoms: Deployment status shows "failed"
Symptoms: API responses take longer than expected
# Enable auto-scaling for better performance
client.deployments.update_config("my-deployment", {
"auto_scaling": {
"min_instances": 2,
"max_instances": 10,
"target_utilization": 60
}
})
# Use batch prediction for multiple inputs
batch_inputs = [{"text": f"Sample text {i}"} for i in range(10)]
results = client.models.predict_batch(
deployment_name="my-deployment",
inputs=batch_inputs
)
Symptoms: Unexpected billing charges
Invalid request parameters or malformed JSON
Rate limit exceeded
import time
import random
def api_call_with_retry(func, max_retries=3):
for attempt in range(max_retries):
try:
return func()
except Exception as e:
if "429" in str(e) and attempt < max_retries - 1:
# Exponential backoff with jitter
delay = (2 ** attempt) + random.uniform(0, 1)
time.sleep(delay)
continue
raise e
# Usage
result = api_call_with_retry(
lambda: client.models.predict(
deployment_name="my-model",
inputs={"text": "Hello world"}
)
)
Server-side error
Get help from our team and community. We're here to ensure your success with the AICortex platform.
Get instant help from our support team
Available 24/7 for Pro and Enterprise customers
support@aicortex.in
Response within 4 hours for paying customers
+91-1147293334
Enterprise customers only
Code examples, SDKs, and issue tracking
github.com/aicortex/platform
Chat with other developers and get quick help
discord.gg/aicortex
Step-by-step guides and best practices
youtube.com/@aicortex
Detailed articles and guides
Platform status and incidents
Weekly Q&A sessions
Updates and tutorials